2.2.3.5 結果 湿式:CUAZ

大日本木材防腐株式会社において、CUAZ を用いて、生産用注薬缶で実施した実大パ ネル試験結果を以下に示す。

1) 試験体の概要

表 2.2.3.5-1 に試験体密度を示す。試験体密度は平均 416 kg/m³だった。

番号	密度 (kg/m³)
ⅢD-1	410
ⅢD-2	420
ⅢD-3	424
ⅢD-4	411

表 2.2.3.5-1 試験体密度

2) 注入条件と注入量

薬剤として CUAZ を用いた実大パネルの注入は、バットを用いた空気圧による注入で行った。注入風景を写真 2.2.3.5-1 に示す。

バットを使用した注入は、液面高さの都合で1度の処理枚数を2枚としたため、注入 条件を変更して2回の処理を行った。

注入条件を表 2.2.3.5-2 に、注入量を表 2.2.3.5-3 に示す。

なお、減圧時間、加圧時間共に設定圧力に達してからの時間とした。

実大パネルでは、試験注薬缶で実施した小ブロック試験体の条件と比較すると、注入 量は 1/4 程度となった。

	加	圧	後掛	非気	所定圧までの
条件	加圧	時間	減圧	時間	到達時間
	(MPa)	(分)	(MPa)	(分)	(分)
1	0.75	10	0.08	30	33
2	0.50	10	0.08	30	26

表 2.2.3.5-2 注入条件

条件	番号	注入量 (kg/m ³)
1	Ⅲ D−1	113
1	ⅢD-2	122
2	ⅢD-3	101
	ⅢD-4	81

表 2.2.3.5-3 注入量

注入前 (バット内への導入)

注入後

写真 2.2.3.5-1 注入処理風景

3) 乾燥条件と含水率

処理が終了した材料は、厚み 30mm の桟木を敷いて 3 日間の養生を行った後。人工乾燥を行った。人工乾燥スケジュールを図 2.2.3.5-1 に示す。

人工乾燥は、途中 50 時間、98 時間経過時点で、重量と高周波式含水率計による含水 率を測定して、118 時間で終了した。重量の変化を表 2.2.3.5-4 に示す。

		重量(kg)									
条件 番号	決す業	计工作	美止效	人工乾燥	人工乾燥	人工乾燥					
	任八則	任八伖	食生饭	50hr	98hr	118hr					
	ⅢD-1	96.3	122.8	115.8	107.6	103.2	101.6				
1	ⅢD-2	98.6	127.3	120.7	110.8	105.1	104.1				
	ⅢD-3	99.5	123.3	116.2	107.8	103.7	102.5				
2	ⅢD-4	96.6	115.6	109.9	103. 9	100.5	99.3				

表 2.2.3.5-4 注入~乾燥工程での重量変化

含水率の測定は材端の四隅4カ所(図中の白丸)と、中央部4カ所(図中の青丸)で 測定した。それぞれの平均値の推移を図2.2.3.5-2に示す。

図 2.2.3.5-2 乾燥工程中の含水率の変化と測定位置(高周波水分計)

本乾燥工程内では、高周波式含水率計による測定で 15%の含水率を下回る結果にはならない箇所があった。

本乾燥工程は、住宅の土台用の乾燥工程であり、D20を目標にしているものであるため、15%以下を目標にする場合は乾燥工程スケジュールを見直す必要がある。

4) 寸法変化

寸法の測定は厚みのみとして、注入前と人工乾燥後に実施した。測定箇所は短辺の 900mm を 4 等分した箇所、長辺の 3,000mm を 12 等分した箇所で測定した(図 2.2.3.5-3 の赤点)。

測定箇所のナンバリングは図 2.2.3.5-3の上辺左側を No.1 として、時計回りで No.32 まで測定した。測定箇所の寸法変化量を表 2.2.3.5-5 に示す。

図 2.2.3.5-3 CLT 寸法測定の測定箇所

	検体ⅢD-1 : 寸法変化量(mm)												
(No. 1	No. 2	No. 3	No. 4	No. 5								
短辺	0.84	1.94	1.96	4.55	0.47								
	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 17
長辺	-0.47	0.96	0.80	0.87	0.52	0.47	-0.29	1.00	0.89	1.45	1.10	1.08	1.17
	No. 17	No. 18	No. 19	No. 20	No. 21								
短辺	1.17	1.76	3.29	2.62	0.90								
	No. 21	No. 22	No. 23	No. 24	No. 25	No. 26	No27	No. 28	No. 29	No. 30	No. 31	No. 32	No. 1
長辺	0.90	1.38	1.08	1.07	1.44	1.80	1.37	0.66	1.69	1.29	1.32	1.13	0.84

表 2.2.3.5-5 CLT の保存処理による寸法変化

					検体Ⅲ	D-2 :	寸法了	変化量(m	nm)				
(No. 1	No. 2	No. 3	No. 4	No. 5								
短辺	0.37	3.14	1.70	3.28	2.24								
E VE	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 17
長辺	2.24	1.08	1.21	1.40	1.18	1.21	1.31	0.90	0.92	0.92	1.59	2.36	-0.14
	No. 17	No. 18	No. 19	No. 20	No. 21								
短辺	-0.14	3.22	1.57	2.36	0.64								
	No. 21	No. 22	No. 23	No. 24	No. 25	No. 26	No27	No. 28	No. 29	No. 30	No. 31	No. 32	No. 1
長辺	0.64	1.47	1.99	1.62	1.45	1.21	1.13	1.49	1.69	2.07	1.81	2.26	0.37

	検体ⅢD-3 : 寸法変化量(mm)												
短	No. 1	No. 2	No. 3	No.4	No. 5								
辺	0.18	1.02	1.55	0.90	0.76								
長	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 17
辺	0.76	1.21	1.73	1.20	0.89	1.51	0.59	2.01	0.89	1.92	0.39	1.54	0.76
短	No. 17	No. 18	No. 19	No. 20	No. 21								
辺	0.76	1.12	1.36	1.53	1.63								
長	No. 21	No. 22	No. 23	No. 24	No. 25	No. 26	No27	No. 28	No. 29	No. 30	No. 31	No. 32	No. 1
辺	1.63	1.12	0.42	1.00	0.97	1.78	0.86	1.02	0.87	1.74	0.89	1.33	0.18

	検体ⅢD-4 : 寸法変化量(mm)												
短	No. 1	No. 2	No. 3	No.4	No. 5								
辺	0.70	1.24	0.85	1.61	1.07								
長	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No11	No. 12	No. 13	No. 14	No. 15	No. 16	No. 17
辺	1.07	1.03	1.79	1.45	0.82	0.69	1.39	0.63	1.02	0.92	0.55	0.82	0.55
短	No. 17	No. 18	No. 19	No. 20	No. 21								
辺	0.55	1.24	1.92	2.06	2.12								
長	No. 21	No. 22	No. 23	No. 24	No. 25	No. 26	No27	No. 28	No. 29	No. 30	No. 31	No. 32	No. 1
辺	2.12	1.98	0.83	1.95	0.77	1.02	1.57	1.00	0.55	0.82	1.12	0.97	0.70

人工乾燥後の含水率が、注入前よりも高い結果となったため、全体的に寸法が膨潤し た結果だった。特に短辺の寸法が局所的に大きな膨潤を示す結果となった。

これは、写真 2.2.3.5-2 に示すように、板目材が平行に固定されて並べられているため、注入時に材料の膨潤した部分の行き場所がなくなり、材内に圧力がかかることで目 廻り状の割れが入ったことと、注入-人工乾燥に至る膨潤収縮での接着剝離が原因と考えられた。

人工乾燥後の短辺写真①

人工乾燥後の短辺写真②

写真 2.2.3.5-2 保存処理 CLT の膨潤原因

5) 浸潤度·含水率

人工乾燥が終了した CLT は、図 2.2.3.1-2 に示すように左上の角を始点として、外層 ラミナ 5 枚分、内層ラミナ 14 枚分の箇所で 4 枚に分割した。

次に浸潤度の観察のために、始点を含む区画を測定対象として、外周にあたる部分の 外側から 5cm を切断し、切断面を浸潤度測定部位とした(図 2.2.3.1-3:緑線)。

次に、始点から外層、内層それぞれラミナ3枚に該当するラインで、残った材料から 全乾含水率試験体を切り取った(図2.2.3.1-3:青線)。切り取った試験体から最も外側 にあたる角と、最も内側にあたる角から5cm角を切り取り、全乾法による含水率測定試 験片とした(図2.2.3.1-3:青色塗りつぶし箇所)。

浸潤度は辺材部および露出している材表面から 10mm 範囲に存在している心材を対象 として測定した。浸潤度を示す写真を写真 2.2.3.5-3 に、浸潤度の測定結果を表 2.2.3.5-6 に示す。

番号	部位	浸潤写真
III D=1	短辺	
mp 1	長辺	
ⅢD-2	短辺	
	長辺	
III D-3	短辺	
шр-з	長辺	
ⅢD-4	短辺	
	長辺	

写真 2.2.3.5-3 保存処理 CLT の薬剤浸潤

采旦	浸潤度(%)					
留方	辺材部	材表面から 10mm 範囲				
ⅢD-1	100	87				
IIID−2	100	80				
ⅢD-3	96	93				
IIID-4	100	50				

表 2.2.3.5-6 保存処理 CLT の薬剤浸潤度

全乾法による含水率の測定結果を、表 2.2.3-6 に示す。

来旦	含水率(%)					
留方	外側	内側				
ⅢD-1	28.8	14.7				
IIID−2	32.9	12.8				
IIID−3	13.7	11.4				
ⅢD-4	16.3	9.7				

表 2.2.3.5-7 保存処理 CLT の含水率(全乾法)

6) 吸収量

写真 2.2.3.5-3 の短辺の 5cm 切断面から辺材部を抜き取り、有効成分の吸収量の測定 を実施した。試験結果を表 2.2.3-8 に示す。

番号	吸収量 (kg/m ³)
ⅢD-1	1.3
ⅢD-2	2.0
ⅢD-3	1.7
ⅢD-4	1.3

表 2.2.3.5-8 吸収量の測定結果

本試験では、前排気を行わない注入方法で処理を行ったため、酸化銅として 0.33% の薬剤濃度で実施した。これは、通常の屋外仕様(JAS K4)の濃度である。

辺材の吸収量であったことと、薬剤濃度を高い設定にしたため、吸収量としては高いレベルを保持していた。

7) 品質検査用 小ブロックでの注入処理

実大パネルと同時に、2.2.5で使用した小ブロックと同じ寸法、シール処理の試験 体も6体注入した。

実大パネルと同様に材端部から 5cm 部位で切断し、5)と同じく浸潤部を呈色させた 後、浸潤度を測定した。注入量および浸潤度の測定結果を表 2.2.3.5-9 に、浸潤写真を 写真 2.2.3.5-4 に示す。

		没す見	浸潤	閻度(%)
条件	 件 番号 注入量 (kg/m³) I D-2 195 I D-3 253 I D-3 253 I D-8 280 I D-2 276 II D-4 302 II D-4 302 II D-6 215 平均値 253 標準偏差 41 I D-2 161 I D-3 216 I D-8 238 II D-2 178 II D-4 226 II D-6 182 	辺材部	材表面から 10mm 範囲	
	I D-2	195	100	96
	I D-3	253	100	98
	I D-8	280	100	90
1	Ⅱ D−2	276	100	100
1	Ⅱ D-4	302	100	96
	Ⅱ D–6	215	100	96
	平均值	253	100	96
	標準偏差	41	0	3
	I D-2	161	100	90
	I D-3	216	100	97
	I D-8	238	95	95
0	Ⅱ D−2	178	100	99
2	Ⅱ D-4	226	100	98
	Ⅱ D−6	182	98	100
	平均值	200	99	97
	標準偏差	31	2	4

表 2.2.3.5-9 CLT (小ブロック)の注入量、浸潤度

平均注入量は実大パネルの注入量の2倍強の値を示した。これは実大パネルの方が未 浸潤域の体積が大きいことに起因している。

浸潤度は、辺材部の数値は実大パネルと同じ数値を示したが、材表面から 10mm 範囲 の心材部の浸潤度は実大パネルより大きな値を示した。

注入	T . D	浸潤	写真
条件	省方	短辺	長辺
	I D-2		
	I D-3		
1	I D-8		
1	ПD-2		
	Ⅱ D-4		
	П D-6		
	I D-2		
	I D-3		
0	I D-8		
2	Ⅱ D−2		
	Ⅱ D-4		
	∏D-6		

写真 2.2.3.5-4 小ブロック CLT の薬剤浸潤

2.2.3.6 まとめ

製品処理 CLT の製造において含水率及び寸法精度が基準を満足するための適正な薬 剤注入条件の導出を目的として、各種注入条件と保存性能、品質の関係を明らかにす るための基礎的なデータ収集を行った。試験には 87mm×900mm×3000mm の3層3プラ イ実大 CLT パネルを用いた。一連の結果を表 2.2.3.6-1 にまとめて示す。

小ブロック試験の結果及び工場設備での注入処理を考慮して「加圧のみ」、「減圧のみ」を注入条件として実施した。

湿式処理において、注入量は「加圧のみ」では 80~118 kg/m³、「減圧のみ」では 37kg/m³となった。同時に処理した小ブロック試験体の注入量はそれぞれ 185~254 kg/m³と 81 kg/m³で、小ブロック試験結果から目標とした 150~250 kg/m³は達成され た。一方、全断面浸潤を目標としない処理における注入量による評価は処理材の体積 の影響を考慮する必要があることが明らかになった。

湿式処理における仕上がり含水率は、注入量を低く設定することで概ね15%以下に することができたと考えられる。しかし、パネルの4つの隅角など一部に含水率が高 い箇所があることも確認された。薬剤注入土台の生産を基本とする乾燥スケジュール の場合は、15%以下の水準を達成するには見直しが必要となる可能性がある。

厚さの寸法精度については、処理前に対して平均的に増加する傾向にある。乾式で +0.4mm、乾燥が一定の水準に達した湿式で+0.6~1.2mm 程度であった。ただし、表層 ラミナの木口が見える面では、ラミナのあばれの影響を大きく受けた。ラミナの割れ 等寸法変化を抑えるのであればラミナの木裏を CLT 表面に出すのが効果的との研究報 告があるが、今回は注入薬剤の乾燥の容易さを考慮して辺材のある木表を CLT 表面に 出して構成した。CLT 表層のラミナの向きについては引き続き検討の余地がある。

浸潤度については、木口から 50mm の断面で評価することを試みた。その上で、集成 材 JAS の基準対象である「辺材部の浸潤度が 80%以上」と「材面から深さ 10mm 部分 の心材部の浸潤度」に着目して評価を行った。その結果、湿式に関しては、前者の基 準 80%には概ね合格するものの後者の 80%以上には課題が残る結果となった。インサ イジング処理の併用など引き続き検討の余地があると考えられる。

乾式に関しては、JAS 規格の測定法のよる全乾含水率、寸法精度、浸潤度、吸収量 に関して問題点はなかった。

表	2	2	3	6-	1
1	<u> </u>	<u> </u>	υ.	•	

薬剤・方式		乾式	湿式	湿式	湿式	湿式
主たる注入処	心理	加圧	減圧	加圧	加圧	加圧
圧力	MPa	0.8	0.08	1.1	0.75	0.5
時間	分	3	60	4	10	10
密度	kg/m3	423	415	420	416	418
注入量	kg/m3		37	80	118	91
含水率(含2		10.9	15.1	6.8		
含水率	平均	9.8	12.7	8.7	22.3	12.8
全幹法	最小	6.2	11.8	5.1	12.8	9.7
(%)	最大	11.8	13.3	11.3	32.9	16.3
寸法精度	平均	0.52	0.70	1.21	1.85	1.21
短辺	最小	-0.18	0.06	0.56	-0.47	0.18
(mm)	最大	1.42	1.56	1.96	4.55	2.12
寸法精度	平均	0.42	0.70	0.56	1.17	1.10
長辺	最小	-0.37	0.11	0.06	-0.47	0.18
(mm)	最大	1.23	1.20	1.11	2.36	2.12
浸潤度最小	木口辺材	100	81		100	96
(%)	表層心材	100	25		80	50
小ブロック	注入量		80	185	254	200
	浸潤度辺材		86		100	95
	浸潤度心材		5		90	90

2.2.4 製品処理試験のまとめ

昨年度の事業成果の一つとして、従来の土台材などの軸材を対象として作られてきた JAS 規格の体系が必ずしも大判の面材である CLT の品質評価に適さないことを示した。しかしながら、一方で注入条件を従来の条件から変更した場合に浸潤度等製品の保存性能に与える影響については不明な点も多い。

そこで、今年度は薬剤の浸潤度評価は現行の製品の中央ではなく、製品端部から任意の距離で実施することを想定するとともに、この考え方に沿う適正な注入処理条件の導出を目的とした。対象とする保存薬剤は、乾式の AZN に加えて湿式の ACQ、AAC、CUAZ とした。

検討にあたっては、まずスギラミナ(29mm×105mm×500mm)を用いて各種注入条件 と注入量の関係について実験した結果、従来の「減圧+加圧」では圧力を低くし処理 時間を短くしても一定の注入量となってしまうこと、「減圧のみ」の場合は注入量を減 少させることはできるがバラツキが大きいこと、「加圧のみ」の場合は圧力と処理時間 を調節することで注入量を減少させるとともにバラツキも抑えられることがわかっ た。

次に、CLT の小ブロック(3層3プライ、87mm×203mm×300mm)を用いた注入試験を 行った結果、「加圧のみ」の場合は、圧力0.3~0.5MPaで時間を10分程度、圧力 0.8MPaで時間を1~3分程度に調節することで注入量をコントロールして減少させる とともにバラツキも抑えられることが明らかになった。

これらの結果に基づいて注入条件を決定し、実大パネル(3層3プライ、87mm× 0.9m×3m)を用いて保存処理CLTを試作し各種試験を行って品質を明らかにした。そ の結果、湿式処理においては、注入量を低く設定することでその仕上がり含水率を概 ね15%以下にすることがでる条件を明らかにした。しかし、パネルの4つの隅角など 一部に含水率が高い箇所があることも確認されており、乾燥スケジュールの見直しが 必要となると示唆された。また、厚さの寸法精度については、処理前に対して平均的 に増加する傾向にあるが、乾式、湿式に関わらず一定の基準を満たせる可能性が示さ れた。ただし、表層ラミナの木口が見える面では、ラミナのあばれの影響を大きく受 ける場合があり、ラミナの木裏/木表等の構成については検討の余地が示された。

浸潤度については、木口から 50mm の断面で評価した上で、集成材 JAS の基準対象で ある「辺材部の浸潤度が 80%以上」と「材面から深さ 10mm 部分の心材部の浸潤度」 に着目して評価を行った結果、湿式に関しては、前者の基準 80%には概ね合格するも のの後者の基準 80%以上には課題が残る結果となった。インサイジング処理の併用な ど検討の余地があると考えられる。

乾式に関しては、JAS 規格の測定法による全乾含水率、寸法精度、浸潤度、吸収量 に関して問題点はなかった。

今後の課題としては、3層3プライ以外の層構成への適用性、スギ以外の樹種への 適用性、適正な乾燥条件の検討、接着や強度性能への影響などを明らかにする必要が あろう。

2.3 ラミナ処理試験

2.3.1 試験体製造の概要

CLT パネルの製造のうちラミナ調達、等級区分、注入処理ラミナの乾燥、たて継ぎ、積層接着、試験体切り出しは、昨年と同じ(株)サイプレス・スナダヤの CLT 工場 にて実施した。ラミナ注入に用いた薬剤は CUAZ とし、インサイジング処理および加圧 注入は大日本木材防腐(株)本社工場で実施した。(処理方法等は、次節 2.3.2 参照)

加圧注入したラミナは CLT 工場において中温乾燥(70℃)を行った(スケジュール については令和2年度事業報告書2.2.1節参照)。再乾燥ラミナは再度等級区分するこ となく、当初の等級区分に応じて外層用、内層用として用いた。4m ラミナは節等の欠 点をチェックしながら長さ2m以下に裁断した後、水平型フィンガージョイントにより 所定の長さにたて継ぎした。たて継ぎ用接着剤は使用環境Aのメラミン樹脂とした。 積層前のラミナ幅は105mm、厚さは昨年と同じ29mmとした。

製造した CLT の層構成は 5 層 5 プライ、幅はぎ接着なし、パネルの寸法は幅 2.5m ×長さ 6.1m×厚さ 145mm であった。積層用接着剤は、使用環境 A のレゾルシノール 系樹脂を用いた。塗布量は昨年の実績に基づいて 260g/m²、圧締時間は 6 時間以上とし た。インサイジング処理の有無で各 2 枚、計 4 枚製造し、その後、強度試験体、接合 試験体を切り出した(図 2.3.1-1、図 2.3.1-2)。

	63 62 6	3 64 65 66 67 68 69 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34	35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 53 54 55 56 57 58 59 60 0
	6.22		
	ea IV-H1		
	a 6090mm		
	0.47		
	an IV-B1		N/-\$11
		2. 2. 225 mm	4 (10 17 /0 100 mm
	0.0 m 17 (R)	# 3,330mm	12 A.M. 96/2,400mm
	0.34		
	CIN IV-H2		
	•== 6090mn	1	
	1.6		
地合せ	1.35 IV-B2		IV-\$12
	18 曲げ積熱	3,335mm	せん断幅/2,400mm
	1.8		-
	W.H3		
	6000		
	1.0		ar an
	1.0 IV-B3		IV-513
	1.0 曲げ積別	3,335mm	せん所幅/2,400mm
	2.00		
	2.30 IV-BI1		
	2.8 曲げ幅/	6.000mm × 300mm	
	2.8		
	2.42 63 62 6 6.33		
	2.42 0.3 0.2 0 0.3 IV - H4 0.3 6090mm		
	61 62 6 6.3 1V - H4 6.2 6090mm	, ,	
	2.4 6.1 6.2 6 6.2 IV-H4 6.2 6090mm 6.4 6.9 1V-B4	, , ,	2 2 2 3 9 8 4 4 6 6 6 6 6 6 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	63 67 6 63 67 6 63 1V-H4 63 6090mn 66 1V-B4		N-SM
	2.4 0.1 0.7 0 0.2 IV-H4 0.2 6090mm 0.4 0.2 IV-B4 0.2 面げ積別	1 4 6 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	15 15 15 15 15 15 15 15 15 15 15 15 15 1
	2.42 4.1 0.2 0 4.2 0 4.2 0 6090mm 4.2 0 6090mm 4.4 0 1V-B4 4.4 面上げ夜沢 4.4	ง ถ. ถ. ย.	13 3 3 3 3 8 4 4 4 4 4 4 4 4 8 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	2.42 6.1 0.2 0 6.2 IV - H4 6.2 6090mm 6.2 IV - B4 6.1 17 6/8 6.4 IV - B5 6.4 IV - H5	аваланы алыны компанияна алаалаа 1 1 1 3.335mm	15.35.37.37.97.40 e e e e e e e e e e e e e e e e e e e
	2.2 0.1 0.7 0 0.1 0.7 0 0.2 1V-H4 0.2 6090mm 0.2 1V-B4 0.2 1V-B4 0.2 1V-H5 0.2 090mm 0.2 0.7 0 0.2 0.7 0 0.0 00000000000000000000000000000	аннымацыыцыынындалдандалыны 1 1 1 3.335mm	N-SI4 业人所领/2,400mm
	2.2 0 3.3 0.2 0.2 0 4.3 1V-H4 4.4 6090mn 4.4 0 5.4 1V-H5 5.4 6090mn 1.6 6090mn 1.6 1V-H5	аввиянцыцьицьицалина <i>ния</i> вии 1 \$ 3.335mm	33 33 33 39 89 43 42 43 44 44 49 19 33 53 19 53 55 19 59 59 59 59 59 59 59 59 59 59 59 59 59
地合せ	240 e1 e2 e e2	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	IV-SI4 IV-SI5
地合せ	246 0.1 0.2 0 0.1 0.1 0.2 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	N-SI4 tf .ml%/2,400mm
地合せ	2-26 10	1 4 6 6 9 9 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9	IV-SI5 セム所領/2,400mm
地合せ	43 82 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	4 a a a a a a a a a a a a a a a a a a a	V-SI4 世人所强/2,400mm
地合せ	43 92 9 43 92 9 43 92 9 43 92 9 43 92 9 44 9 44 10 44 10	1 44 65 65 67 67 67 65 65 65 65 65 65 65 65 75 75 75 75 75 75 75 75 75 75 75 75 75	N - SI4 世人所领/2,400mm
地合せ	2-20 	<pre> 4 * * * * * * * * * * * * * * * * * * *</pre>	IV-SI4 VV-SI5 セイ州領/2,400mm
地合せ	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1 4 6 8 8 9 9 9 1 9 1 9 1 9 1 1 1 1 1 1 1 1 1	N-SI5 化-SI5 化-SI5
総合せ	2 - 42 - 6 3 - 42 - 6 4	 4 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 7 8 8 7	IV - SIS セムビスののmm IV - SIS セムビスののmm IV - SIS セムビスののmm IV - SIS レムビスののmm IV - SIS レムビスののmm IV - SIS
地合せ	41 42 6 43 6000m 6 44 1V-H4 6 45 1V-H4 6 44 1V-H5 6 45 1V-H5 6 46 1V-H5 6 47 10 11/14 48 1V-H5 11/14 49 11/14 11/14 40 11/14 11/14 41 11/14 11/14 42 11/14 11/14 43 11/14 11/14 44 11/14 11/14 45 11/14 11/14 46 11/14 11/14 47 11/14 11/14 48 11/14 11/14 49 11/14 11/14 40 11/14 11/14 41 11/14 11/14 42 11/14 11/14 43 11/14 11/14 44	1 3.335mm 4 3.335mm 6.000mm×300mm 4 3.335mm	V-SI6 化人则强化2,400mm
地合せ	41 42 42 42 43 42 42 42 43 42 42 42 44 43 42 42 44 44 45 42 44 44 45 42 42 45 117-84 45 42 42 45 117-84 45 42 42 45 117-84 45 42 42 45 117-84 45 42 42 45 117-84 45 42 42 46 117-84 45 42 42 47 117-84 45 42 42 40 117-84 45 42 42 42 41 117-84 45 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 <td< th=""><th>1 44 65 66 67 67 67 67 67 67 67 67 67 67 67 67</th><th>N - S14 世人所信/2,400mm 化 - S15 世人所信/2,400mm</th></td<>	1 44 65 66 67 67 67 67 67 67 67 67 67 67 67 67	N - S14 世人所信/2,400mm 化 - S15 世人所信/2,400mm
地合せ		4	IV-SI6 セムアのmm
地合せ	2-26 43 42 629 43 42 669 609 609 44 609 11 76.8 76.9 45 11 76.8 11 76.8 76.9 76.9 44 11 11 76.8 11 76.8 76.9	1 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	IV-SI4 セ 人所低/2,400mm IV-SI6 セ 人所低/2,400mm
地合せ	2.4 4.1 4.2 4.4 4.4 4.2 4.4 4.4 4.5 4.6 4.6 4.6 4.6 11/10 11/10 11/10 4.6 11/10 11/10 11/10 4.6 11/10 11/10 11/10 4.6 11/10 11/10 11/10 4.6 11/10 11/10 11/10 4.6 11/10 11/10 11/10 4.6 11/10 11/10 11/10 4.7 11/10 11/10 11/10 4.8 11/10 11/10 11/10 4.8 11/10 11/10 11/10 4.8 11/10 11/10 11/10 4.9 11/10 11/10 11/10 4.9 11/10 11/10 11/10 4.9 11/10 11/10 11/10 4.9 11/10 11/10 11/10 4.9 11/10 11/10 11/10	4 4 6 8 0 4 6 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1	IV-SI6 セムのmm セムルビ協/2,400mm IV-Si6 セムルビ協/2,400mm
総合せ	43 42 43 44 45 4	1 3.335mm 4 3.335mm 4 3.335mm 6.000mm×300mm 6.000mm×300mm	V-SI4 世人所强/2,400mm V-SI5 世人所强/2,400mm

図 2.3.1-1 CLT パネルからの各種試験体の採材パターン

Ⅳ-C1 任祀/870mm	IV-SO1 せん断積層/1,0	115mm	IV-C2 压棉/870mr	TI	IV-D1 接着/ 300mm	IV-JB1 接合引	1 まポルト1.0	00		加工 余長 210	IV~)51 スプライン 400	IV-JS2 スプライン 400	Ⅳ~353 スプライン 400
N-C3 圧跳/870mm	IV-SO2 せん断積層/1,0	115mm	Ⅳ-C4 庄略/870mr	n	IV-D2 接意/ 300mm	IV*JB2 接合引	2 \$ 1% + 1.0	00		加工 余長 210	N'JS4 スプライン 400	N°JS5 スプライン 400	N°356 スプライン 400
IV-C5 庄赋/870mm	IV-S03 せん断積層/1,0	15mm	IV-C5 庄隆/870mr	Π	IV-D3 接着/ 300mm	IV-JB3 接合引	3 まポルト1,0	00		加工 余長 210	N-JS7 スプライン 400	№158 スプライン 400	1√JS9 スプライン 400
N-SO4 せん新硯層/1,015mm	IV-D4 IV 接着/ せ 300mm	-SO5 ん新積度/1,015	imm	IV-JE4 接合引きポパ	► F 1,000		加工 IV'JS1 余長 スプラ 210 ⁴⁰⁰	0	NV:3511 スプラ・ 400	12	№3512 スプライン 400	IV ⁻ JS16 スプライン 400	N-3517 スプライン 400
N-D5 投電/ 300mm	015mm	IV-D6 IV-J 接着/ 接合 300mm	85 引きポルト1,0	100	IV*3B6 接合引まポ≀	c + 1.00	90	加工 余長 210	N-JS13 スプラ・ 400	42	IV=JS14 スプライン 400	Nº1S15 スプライン 400	NºJS18 スプライン 400

図 2.3.1-2 軸材状 CLT からの接合試験体等の採材パターン

なお、接合試験体の接合部加工は、ハセベつくば工場において実施した。

また、今回 CLT 製造に用いたラミナの強度性能を把握するためにたて継ぎラミナ試験 体を同じ CLT 工場のたて継ぎラインで作製した。たて継ぎラミナは図 2.3.1-1 に示すよ うな FJ の位置を指定した 29mm×105mm×4000mm の材で、外層用、内層用とインサイジ ングの有無を組み合わせた 4 条件で、各 34 枚以上製造した。

図 2.3.1-3 たて継ぎラミナ試験体の概要

2.3.2 ラミナ注入

ラミナ処理試験体における薬剤処理は、大日本木材防腐株式会社が担当して実施した。

1) 材料の納品

令和4年8月31日付で、株式会社サイプレス・スナダヤよりCLT ラミナ1,280枚の納品があった(写真2.3.2-1)。材料の明細を表2.3.2-1に示す。

品名	樹種	寸法(mm)	強度等級区分	枚数
		110 X + 00 X I 4 000	外層用	560
CLI 737	74	w118×t 33×L4,000	内層用	720

表 2.3.2-1 CLT ラミナの明細

2) インサイジング

令和4年9月8日に、各等級区分枚数のうち半数にラミナ時点でのインサイジン グ加工を行った(写真2.3.2-2~3)。

インサイジング機は表 2.3.2-2 の仕様のもので実施したが、材料の厚みの都合上、 片面ずつのインサイジング加工を 2 回施工することで 2 面のインサイジング加工と した。なお、狭面の 33 mm厚み部分にはインサイジング加工は実施しなかった。

表 2.3.2-2 インサイジング機の仕様

全国木材検査・研究協会	適応樹種	刃数・密度	刃の寸法(mm)		
認証番号		(個/m²)	厚み	幅	深さ
JLIRA-IS-21	全樹種	4, 700	4	10	12

写真 2.3.2-1 ラミナ納品

写真 2.3.2-2 インサイジング

3) 注入前の重量、含水率の測定

令和4年9月12日に、ラミナの重量及び含水率を測定した。重量の測定は注入 処理用に一定枚数を結束した状態で、重量計付きのリフトで計測した(トヨタフォ ークリフトL-239)。

外層用ラミナの一部はインサイジングあり、インサイジングなしの1結束をばら して、1本単位で重量測定を実施した(写真 2.3.2-4)。

含水率の測定は、外層用および内層用ラミナからランダムに 60 枚を抜き取り、高 周波水分計(Merlin 社 HM9-WS25)を使用して、材長に対して中央部で計測を行った。 重量の測定結果は表 2.3.2-5、含水率の測定結果は表 2.3.2-3 示す。

次にの200 日小十別に相木(十日:707								
区分	平均值	最大値	最小値	変動係数				
外層用	11.9	15.8	7.5	0.15				
内層用	9.2	13.9	6.5	0.20				

表 2.3.2-3 含水率測定結果(単位:%)

写真 2.3.2-3 インサイジング

写真 2.3.2-4 重量計測

4) 注入処理

令和4年9月13日に、大日本木材防腐㈱本社工場にて薬剤名タナリスCYを用いて注入処理を行った(写真2.3.2-5~6)。処理方法はJISA 9002「木質材料の加圧式保存処理方法」に基づき、処理条件表2.3.2-4にて実施した。注入結果を表2.3.2-5に示す。

処理ラミナは1週間以上の養生の後、人工乾燥および CLT 製造に向けて、株式会 社サイプレス・スナダヤに返送した。

前排気圧力	加圧	後排気圧力	圧入量	薬剤濃度
(時間)	(時間)	(時間)	(kg/m^3)	(% as CuO)
0.08MPa	1.60MPa	0.08MPa	654	0.05
(0.5hr)	(5.5hr)	(0.5hr)	654	0.25

表 2.3.2-4 薬剤処理条件

区分	No.	インサイ ジング	入数 (枚)	材積 (m ³)	初期 重量 (kg)	容積重 (kg/m³)	処理後 重量 (kg)	注入量 (kg/m ³)
	А		104	1.62	770	475	1,630	531
	В	 C なし	152	2.37	1,070	452	2,450	583
	С		24	0.37				
ム区田	ave					461		562
2ト 暦 円	1		96	1.50	680	455	1,660	655
	2	ち N	96	1.50	700	468	1,650	635
	3	めり	83	1.29	620	480	1,420	619
	ave					467		637
	А		112	1.74	670	384	1,880	694
	В	+>1	152	2.37	930	393	2, 610	710
	С		96	1.50	620	415	1,510	595
中国田	ave					396		674
的慣用	1		135	2.10	880	418	2, 240	647
	2	t N	135	2.10	900	428	2, 280	656
	3	めり	90	1.40	610	435	1,520	649
	ave					426		651

表 2.3.2-5 注入量の測定結果(結束単位)

※ 各区分の平均値は、材積の要素を掛け合わせて算出している。

※ 外層用 No.C は測定を行わなかった。

※ 外層用の材料は5枚をインサイジング機の設定の段階で消費した。

写真 2.3.2-5 注入前材料

写真 2.3.2-6 注入処理後

5) 結束内の注入量分布

表 2.3.2-5 中の、外層用 No.A (インサイジングなし)および外層用 No.1 (インサ イジングあり)の材料は、1本ごとの注入量を測定した。結果を表 2.3.2-6 および 図 2.3.2-7 に示す。

区公	インサイジ		注入量	(kg/m ³)	
凶力	ング	平均	最大	最小	変動係数
外層用 No.A	なし	547	760	399	0.15
内層用 No. 1	あり	635	754	518	0.09

表 2.3.2-6 1本単位での注入量測定結果

図 2.3.2-7 1本単位での注入量ヒストグラム

6) 考察

表 2.3.2-5 の各区分の平均値を用いて、注入前の含水率を 10%、木材の真比重を 1.5、薬液の比重を 1.0 として算出した体積構成比率を、図 2.3.2-8 に示す。

図 2.3.2-8 注入後の体積構成比率(百分率)

図 2.3.2-8 の構成比率の値から、本注入では材料全体に対して十分な注入が実施 できたと考えられた。インサイジングの実施は、外層用のラミナに対しては注入量 が上昇したこと、変動係数の減少や図 2.3.2-7 に観られるようにバラツキを小さく する効果があった。

内層用ラミナについては、インサイジングなしの状態で非常に高いレベルでの注 入量が確保されたため、インサイジングの効果は観察されなかった。

2.3.3 強度性能

2.3.3.1 ラミナの強度性能

2.3.3.1.1 供試体

CUAZ 処理・インサイジングなし・外層用、CUAZ 処理・インサイジングなし・内層用、CUAZ 処理・インサイジングあり・外層用、CUAZ 処理・インサイジングあり・内層用の4 種類の ラミナを供試体とした。寸法はいずれも厚さ 29mm×幅 105mm×長さ 3900mm であり、複数の フィンガージョイント(FJ)を有している。供試体の概要を表 2.3.3.1.1-1 に示す。これら の供試体から、FJ 位置がそれぞれほぼ中央になるようにしてフラットワイズ曲げ試験体、 縦引張試験体、縦圧縮試験体を採材した。採取パターンを図 2.3.3.1.1-1 に示す。

保存処理材	インサイジングの有無	ラミナ分類	本数					
CUAZ	なし	外層用	48					
		内層用	32					
	あり	外層用	42					
		内層用	44					

表 2.3.3.1.1-1 ラミナ供試体の概要

図 2.3.3.1.1-1 ラミナ供試体からの採材パターン

2.3.3.1.2 FJ ラミナのフラットワイズ曲げ試験

(1) 試験方法

曲げ試験に先立ち、密度、縦振動法によるヤング係数を測定した。フラットワイズ曲げ試 験は直交集成板の JAS のラミナの曲げ C 試験に従って行った。すなわち、スパン(609mm) を厚さ(29mm)の21 倍とした3等分点4点曲げ試験とした。FJ は荷重点内に配置した。材 料試験機(ミネベア製 TCM10000)により載荷した。クロスヘッド速度は10mm/minとした。 試験体の側面中央部に変位計(東京測器研究所製 CDP-50)を設置し試験体の全たわみを測 定した。試験終了後、全たわみから求めた見かけの曲げヤング係数、比例限度応力、曲げ強 度を算出した。また、破壊後の試験体のFJ の両側から長さが約20mmの含水率測定用試験 体を1体ずつ切り出し、全乾法で含水率を測定した。試験体の含水率は両含水率試験体の平 均値とした。曲げ試験の様子を写真2.3.3.1.2-1~2に示す。

写真 2.3.3.1.2-1~2 FJ ラミナのフラットワイズ曲げ試験の様子

(2) 結果

FJ ラミナのフラットワイズ曲げ試験の結果の概要を表 2.3.3.1.2-1 に示すともに、各グ ループの破壊形態の例を写真 2.3.3.1.2-3~12 に示す。大部分の試験体が FJ 部で破壊した が、一部の試験体で節や繊維傾斜を含んで破壊した試験体も存在した。インサイジングあり 外層用の1体で FJ で抜けた試験体があった(写真 2.3.3.1.2-9~10)。この試験体は他の試 験体に比べて曲げ強度が大きく低下していた。

試験体概要		密度	含水率	縦振動法の ヤング係数	見かけの 曲げヤング係数	比例限度 応力	曲げ強度
		(kg/m ³)	(%)	(kN/mm²)	(kN/mm ²)	(N/mm ²)	(N/mm ²)
処理区分:ラミナ処理	試験体数	48	48	48	48	48	48
保存処理材:CUAZ	平均值	433	9.06	10.9	9.56	34.7	35.0
インサイジング:なし	最小値	378	8.08	8.26	7.35	26.0	26.9
記号:D	最大値	480	10.6	14.6	11.9	46.4	46.4
分類:外層用	標準偏差	24.7	0.533	1.37	1.08	4.76	4.52
たて継ぎ:FJ	変動係数(%)	5.70	5.88	12.6	11.3	13.7	12.9
処理区分:ラミナ処理	試験体数	32	32	32	32	32	32
保存処理材:CUAZ	平均值	382	8.61	5.73	5.03	21.3	21.8
インサイジング:なし	最小値	324	8.00	4.29	3.79	6.06	8.04
記号:D	最大値	460	10.5	8.73	7.92	32.8	32.8
分類:内層用	標準偏差	32.4	0.516	0.868	0.811	5.34	5.08
たて継ぎ:FJ	変動係数(%)	8.49	6.00	15.1	16.1	25.1	23.3
処理区分:ラミナ処理	試験体数	42	42	42	42	42	42
保存処理材:CUAZ	平均值	451	8.73	10.1	8.06	29.8	31.0
インサイジング:あり	最小値	358	7.75	7.48	5.85	5.82	9.22
記号:DI	最大値	529	9.84	14.2	10.5	38.9	40.5
分類:外層用	標準偏差	41.7	0.392	1.25	1.11	5.87	5.41
たて継ぎ:FJ	変動係数(%)	9.24	4.50	12.4	13.8	19.7	17.4
処理区分:ラミナ処理	試験体数	44	44	44	44	44	44
保存処理材:CUAZ	平均值	400	8.31	6.69	5.34	21.2	22.3
インサイジング:あり	最小値	327	7.29	5.33	3.86	10.5	10.5
記号:DI	最大値	503	8.98	8.19	6.45	29.6	30.6
分類:内層用	標準偏差	36.9	0.378	0.722	0.558	4.27	4.20
たて継ぎ:FJ	変動係数(%)	9.21	4.55	10.8	10.4	20.1	18.8

表 2.3.3.1.2-1 FJ ラミナのフラットワイズ曲げ試験の結果の概要

写真 2.3.3.1.2-3~4 インサイジングなし外層用の破壊形態の例(No.3) FJ による破壊

写真 2.3.3.1.2-5~6 インサイジングなし内層用の破壊形態の例 (No.15) FJ+欠けによる 破壊

写真 2.3.3.1.2-7~8 インサイジングあり外層用の破壊形態の例(No.18)繊維傾斜+FJ による破壊

写真 2.3.3.1.2-9~10 インサイジングあり外層用の破壊形態の例(No.42) FJ 抜けによる破壊

写真 2.3.3.1.2-11~12 インサイジングあり内層用の破壊形態の例(No.14) FJ+繊維傾斜 +節による破壊

見かけの曲げヤング係数および曲げ強度の平均値および 5%下限値を JAS 基準値と比較 したものを表 2.3.3.1.2-2~3 に示す。

見かけの曲げヤング係数について、インサイジングなし外層用は平均値・下限値とも M90A 相当であった。インサイジングあり外層用は平均値・下限値とも M60A 相当であった。イン サイジングなし内層用とインサイジングあり内層用は平均値・下限値とも M30A 相当であっ た。

曲げ強度について、インサイジングなし外層用は平均値・下限値とも M90A 相当であった。 インサイジングあり外層用は平均値は M60A 相当であったが、下限値は M30A 相当であった。 下限値が M60A 相当を下回ったのは、1 体の FJ 抜けした曲げ強度の低い試験体 (DI-M60-B-FJ-42、9.2 N/mm²) が影響したと考えられる。なお、正規分布を仮定して 5% 下限値を算出 すると、インサイジングあり外層用の下限値は 21.1 N/mm²となり、M60A の基準強度相当で あった。インサイジングなし内層用とインサイジングあり内層用は平均値では M30A 相当で あったが、下限値は M30A の基準値をともに下回った。これは一部の曲げ強度の低い試験体 (例えば写真 2.3.3.1.2-5~6 に示した D-M30-B-FJ-15 の曲げ強度は 8.04 N/mm²であった) が影響したと考えられる。なお、正規分布を仮定して 5% 下限値を算出すると、インサイジ ングなし内層用とインサイジングあり内層用でそれぞれ 12.3 N/mm²、14.6 N/mm²となり、 インサイジングあり内層用は M30A の下限値を上回るが、インサイジングなし内層用は M30A の下限値を下回った。

JAS 等級または本試験体	平均值	下限值
M90A	9.0	7.5
M60A	6.0	5.0
M3OA	3.0	2.5
インサイジングなし外層用	9.56	7. 78
インサイジングあり外層用	8.06	5.95
インサイジングなし内層用	5.03	3. 81
インサイジングあり内層用	5.34	4. 09

表 2.3.3.1.2-2 見かけの曲げヤング係数の JAS 基準値との比較(単位: kN/mm²)

注: 下限値は ASTM D2915 に基づいた信頼水準 75%の 95%下側許容限界値(順位法)である。

JAS 等級または本試験体	平均值	下限值
M90A	34. 5	26.0
M60A	27.0	20.0
M30A	19.5	14.5
インサイジングなし外層用	35.0	27.4
インサイジングあり外層用	31.0	16.6
インサイジングなし内層用	21.8	8.91
インサイジングあり内層用	22. 3	13. 1

表 2.3.3.1.2-3 曲げ強度の JAS 基準値との比較(単位:N/mm²)

注:下限値は ASTM D2915 に基づいた信頼水準 75%の 95%下側許容限界値(順位法)である。

縦振動法のヤング係数、見かけの曲げヤング係数、曲げ強度におけるインサイジングの有 無の影響について、t検定により平均値を比較したものを図 2.3.3.1.2-1~6 に示す。有意 水準 5%で有意差があったもののみ p値を示した(以下同様)。外層用ではいずれの物性値 においても有意にインサイジングなしの方が高い値を示した。内層用では縦振動法のヤン グ係数のみ、外層用とは逆にインサイジングありの方が高い値を示し、他は有意差はなかっ た。これまでの製材品等の知見から、インサイジングが縦振動法のヤング係数に及ぼす影響 は小さいと考えられる。外層用では見かけの曲げヤング係数と曲げ強度の p 値が縦振動法 のヤング係数よりも小さくなっていること、内層用では縦振動法のヤング係数で見られた 有意差が見かけの曲げヤング係数と曲げ強度で見られないことを考えると、インサイジン グが見かけの曲げヤング係数と曲げ強度を低下させる可能性は否定できないと考えられる。

フラットワイズ曲げ試験のすべての結果を表 2.3.3.1.2-4~7 に示す。

<u> </u>	(川47 処理・インサイジングた上・外属田のフラットワイズ曲げ試験結果)
12 2.0.0.1.2 4	OCAL 処理。インサインシブなし。外層市のシブライシイへ曲け武豪和未

	試験	体	昏号		密度	含水率	縦振動法の ヤング係数	見かけの 曲げヤング係数	比例限度 応力	曲げ強度	破壊形態
					(kg/m ³)	(%)	(kN/mm ²)	(kN/mm ²)	(N/mm ²)	(N/mm ²)	
D	M60	В	FJ	1	437	8.54	8.87	7.89	29.8	29.8	FJ
D	M60	В	FJ	2	392	8.26	10.8	9.46	26.0	26.9	FJ
D	M60	В	FJ	3	436	8.27	10.4	9.66	35.2	35.2	FJ
D	M60	В	FJ	4	458	8.68	10.7	9.34	39.1	39.1	FJ
D	M60	В	FJ	5	409	9.31	10.9	9.84	34.0	34.0	FJ
D	M60	В	FJ	6	431	9.01	11.9	10.6	42.5	42.7	FJ
D	M60	В	FJ	7	435	8.99	11.2	10.1	39.7	39.7	FJ
D	M60	В	FJ	8	404	8.32	11.6	9.87	34.3	34.9	FJ
D	M60	В	FJ	9	412	8.20	11.2	9.63	30.6	32.1	FJ
D	M60	В	FJ	10	454	9.39	10.9	9.57	35.6	35.6	FJ
D	M60	B	FJ	11	394	9.33	9.81	8.67	29.0	29.0	FJ
D	M60	B	FL	12	434	8 4 1	12 7	11.3	32.8	32.8	FI
D	M60	B	FI	13	442	10.0	11.8	11.0	35.5	35.5	FI
D	M60	B	FI	14	421	8 61	12.7	11.3	34.1	34.1	FI
	Men	R	FI	15	462	8.85	9 1 8	8 52	29 5	29.5	FI
	MED	R	FI	16	415	9.00	9.10 9.11	9.05	20.0 31 R	23.5 31.8	FI
	M60	B	FI	17	415	0.13	0.25	8 15	20.3	20.3	FI
	MGO	D		10	410	0.69	9.25	0.15	23.3	23.3	
	MEO	D		10	459	9.00	9.00	0.20	27.0	27.0	
	MGO	D		19	404	9.33	9.20	8.00	22.0	27.9	
	NICO	D		20	475	9.17	9.97	8.99 10.2	33.U 25.C	33.U 25.C	
	NI60	В	FJ	21	441	9.61	11.8	10.3	35.0	35.0	FJ
	10160	В	FJ	22	439	9.87	10.6	9.36	42.6	42.6	FJ
	M60	В	FJ	23	378	8.43	11.8	9.37	38.0	38.0	FJ
	M60	B	FJ	24	449	9.64	13.7	11.6	40.6	40.8	FJ
	M60	В	ΗJ	25	394	8.98	10.1	9.15	32.1	32.1	FJ
D	M60	В	FJ	26	427	8.68	12.4	10.6	33.8	35.2	FJ
D	M60	В	FJ	27	402	9.19	10.3	9.02	27.5	27.5	FJ
D	M60	В	FJ	28	405	8.08	11.7	10.3	38.3	38.3	FJ
D	M60	В	FJ	29	448	8.93	11.2	10.2	34.5	35.4	FJ
D	M60	В	FJ	30	439	9.38	9.72	8.80	32.7	32.7	FJ
D	M60	В	FJ	31	449	9.39	9.26	8.49	39.8	40.3	FJ
D	M60	В	FJ	32	436	9.19	12.3	11.4	41.0	41.0	FJ
D	M60	В	FJ	33	480	9.01	9.34	8.18	41.3	41.3	FJ+K
D	M60	В	FJ	34	425	9.27	8.26	7.35	27.1	31.5	FJ
D	M60	В	FJ	35	462	9.27	9.35	8.25	32.2	32.4	FJ
D	M60	В	FJ	36	385	9.30	10.5	9.48	38.4	38.4	FJ
D	M60	В	FJ	37	405	9.00	10.9	9.63	28.2	29.3	FJ
D	M60	В	FJ	38	424	9.38	9.91	9.77	34.1	34.1	FJ
D	M60	В	FJ	39	475	9.61	14.6	11.9	33.3	33.3	FJ
D	M60	В	FJ	40	453	8.87	10.3	8.89	35.8	35.8	FJ
D	M60	В	FJ	41	442	8.28	12.0	9.92	33.1	33.1	FJ+K
D	M60	В	FJ	42	447	9.11	13.4	11.2	27.9	30.8	FJ
D	M60	В	FJ	43	433	8.98	10.2	9.17	31.6	31.6	FJ
D	M60	В	FJ	44	455	10.6	10.9	8.61	28.0	28.0	FJ
D	M60	В	FJ	45	431	8.85	11.2	10.0	42.2	42.5	FJ
D	M60	В	FJ	46	434	8.57	9.76	8.36	36.4	36.4	FJ
D	M60	В	FJ	47	461	10.04	12.8	11.1	46.4	46.4	FJ
D	M60	В	FJ	48	425	8.84	10.5	8.90	34.0	34.0	FJ

注:便宜的に記号を M60 としている。破壊形態について、FJ はフィンガージョイント、K は節によるものである。

試験体番号			密度	含水率	縦振動法の ヤング係数	見かけの 曲げヤング係数	比例限度 応力	曲げ強度	破壊形態		
					(kg/m³)	(%)	(kN/mm ²)	(kN/mm ²)	(N/mm ²)	(N/mm ²)	
D	M30	В	FJ	1	399	9.28	5.43	4.57	25.1	25.1	FJ
D	M30	В	FJ	2	401	8.75	5.63	5.15	20.8	20.8	FJ
D	M30	В	FJ	3	356	8.22	6.29	5.56	30.0	30.5	FJ
D	M30	В	FJ	4	359	8.17	4.47	3.93	23.8	23.8	FJ
D	M30	В	FJ	5	345	8.10	6.15	5.52	17.8	17.8	FJ
D	M30	В	FJ	6	384	8.94	5.49	4.92	25.7	25.7	FJ
D	M30	В	FJ	7	364	8.15	5.02	4.26	13.5	13.5	FJ
D	M30	В	FJ	8	376	8.01	4.86	4.10	25.3	25.3	FJ
D	M30	В	FJ	9	377	8.25	6.81	5.68	23.3	23.3	FJ
D	M30	В	FJ	10	353	8.60	6.57	5.44	21.5	21.6	FJ
D	M30	В	FJ	11	346	8.67	5.69	4.77	19.2	19.2	FJ
D	M30	В	FJ	12	389	8.65	5.87	5.30	15.1	15.8	FJ
D	M30	В	FJ	13	370	10.5	8.73	7.92	32.8	32.8	FJ
D	M30	В	FJ	14	378	8.43	5.48	4.92	20.3	22.6	FJ
D	M30	В	FJ	15	398	8.72	4.86	4.05	6.06	8.04	FJ+欠け
D	M30	В	FJ	16	352	8.12	4.97	4.45	21.2	21.5	FJ
D	M30	В	FJ	17	418	8.94	4.69	4.16	18.6	18.6	FJ
D	M30	В	FJ	18	373	8.53	4.84	4.07	14.7	14.7	FJ
D	M30	В	FJ	19	396	8.61	6.26	5.51	25.2	27.0	FJ+K
D	M30	В	FJ	20	344	8.21	6.67	6.08	19.4	21.2	FJ
D	M30	В	FJ	21	324	8.46	6.00	5.37	20.0	20.0	FJ
D	M30	В	FJ	22	370	8.41	5.26	4.54	21.5	21.7	FJ
D	M30	В	FJ	23	361	8.54	6.95	5.82	20.7	21.2	FJ
D	M30	В	FJ	24	403	8.72	5.66	4.74	16.8	18.5	FJ
D	M30	В	FJ	25	460	8.82	5.98	4.67	28.3	28.3	FJ
D	M30	В	FJ	26	359	8.28	6.41	5.66	20.6	20.7	FJ
D	M30	В	FJ	27	423	9.51	5.69	5.22	26.5	26.5	FJ
D	M30	В	FJ	28	408	8.00	5.86	5.51	28.9	28.9	FJ
D	M30	В	FJ	29	348	8.66	5.62	4.98	18.8	18.8	FJ
D	M30	В	FJ	30	400	8.02	4.29	3.79	15.9	18.6	FJ
D	M30	В	FJ	31	442	9.10	5.43	4.92	20.8	21.4	FJ
D	M30	В	FJ	32	447	9.11	5.53	5.39	22.5	22.5	FJ

表 2.3.3.1.2-5 CUAZ 処理・インサイジングなし・内層用のフラットワイズ曲げ試験結果

注:便宜的に記号を M30 としている。破壊形態について、FJ はフィンガージョイント、K は節によるものである。

試験体番号	密度 含水率	縦振動法の	見かけの	比例限度	曲げ強度	破壊形態
	(kg/m^3) (9/)	ヤンク係数 (kN/mm^2)	田 け ヤ ン ク 係 数	(N/mm^2)	(N/mm^2)	
DIM60 B FL 1	(kg/III) (/////////////////////////////////	(KN/IIIII) 9.51	7.40	27.2	27.2	FI
DIM60 B FL 2	382 832	9.62	7.12	25.3	26.5	FI
DIM60 B FL 3	487 8.22	9.30	7.80	28.6	29.9	FI+荷重占直下材縁部
DIM60 B FL 4	418 810	10.0	7.46	32.9	33.0	K(荷重占直下)
DIM60 B FL 5	426 8.62	7.48	5.85	25.3	25.3	FI
DI M60 B FJ 6	492 9.08	10.8	9.28	32.1	32.2	FJ
DIM60 B FJ 7	358 8.86	9.36	7.55	36.2	36.7	FJ
DIM60 B FJ 8	427 8.42	11.4	8.80	38.9	40.5	FJ
DI M60 B FJ 9	429 8.73	8.57	6.97	33.2	33.2	FJ
DI M60 B FJ 10	509 9.02	10.6	9.62	38.2	38.8	FJ
DI M60 B FJ 11	475 9.84	7.91	6.04	22.4	22.4	FJ+K
DI M60 B FJ 12	434 8.64	11.6	8.57	29.1	32.1	FJ
DI M60 B FJ 13	485 9.19	10.5	8.33	37.5	37.5	FJ
DI M60 B FJ 14	473 8.85	11.7	9.49	27.3	27.4	FJ
DI M60 B FJ 15	390 9.05	9.38	7.62	29.9	30.5	FJ
DI M60 B FJ 16	418 8.45	9.65	7.56	26.9	27.0	FJ+K
DI M60 B FJ 17	451 8.62	9.96	8.18	34.7	36.0	FJ
DI M60 B FJ 18	446 8.84	9.49	8.47	27.4	27.6	繊維傾斜+K
DI M60 B FJ 19	505 8.98	9.68	7.60	28.2	28.2	FJ
DI M60 B FJ 20	465 8.36	9.22	8.31	29.2	33.5	FJ
DI M60 B FJ 21	509 9.09	10.9	8.59	36.3	36.6	FJ
DI M60 B FJ 22	486 8.25	11.5	9.06	32.6	32.7	FJ
DI M60 B FJ 23	453 8.61	9.07	7.21	31.6	31.9	FJ
DI M60 B FJ 24	389 8.97	9.24	7.56	25.8	27.5	FJ
DI M60 B FJ 25	461 8.73	11.3	8.62	29.1	31.6	FJ
DI M60 B FJ 26	447 8.57	9.26	6.88	28.7	28.7	FJ
DI M60 B FJ 27	463 8.83	9.87	8.43	37.8	38.2	FJ
DI M60 B FJ 28	529 9.10	14.2	10.5	22.4	28.2	FJ
DI M60 B FJ 29	417 8.97	9.57	7.54	27.6	29.9	FJ
DI M60 B FJ 30	462 8.40	11.1	8.88	27.5	31.5	FJ
DI M60 B FJ 31	394 8.88	10.6	7.67	29.7	29.7	FJ
DI M60 B FJ 32	381 8.65	10.4	7.19	23.3	27.9	FJ
DI M60 B FJ 33	488 8.54	11.7	9.95	31.0	33.4	FJ
DI M60 B FJ 34	482 9.82	11.3	8.93	36.1	37.5	FJ
DI M60 B FJ 35	527 8.87	11.9	10.3	36.2	37.4	FJ
DI M60 B FJ 36	440 8.58	9.82	7.52	24.5	27.8	FJ
DI M60 B FJ 37	458 8.84	9.72	7.99	32.2	32.2	FJ
DI M60 B FJ 38	491 8.57	11.5	9.84	33.4	33.4	FJ
DI M60 B FJ 39	439 8.88	8.76	7.12	26.4	26.4	FJ
DI M60 B FJ 40	392 8.70	9.18	6.98	34.4	34.4	FJ
DI M60 B FJ 41	474 8.41	8.84	7.73	30.2	30.7	FJ
DI M60 B FJ 42	443 7.75	9.47	6.04	5.82	9.22	FJ(抜け)

表 2.3.3.1.2-6 CUAZ 処理・インサイジングあり・外層用のフラットワイズ曲げ試験結果

注:便宜的に記号をM60としている。破壊形態について、FJはフィンガージョイント、Kは節によるものである。

表 2.3.3.1.2-7 CUAZ 処理・インサイジングあり・内層用のフラットワイズ曲げ試験結果

試懸	全体	番号		密度	含水率	縦振動法の ヤング係数	見かけの 曲げヤング係数	比例限度 応力	曲げ強度	破壊形態
_				(kg/m³)	(%)	(kN/mm ²)	(kN/mm ²)	(N/mm ²)	(N/mm ²)	
DI M30	В	FJ	1	372	7.71	5.33	4.89	14.8	14.8	FJ
DI M30	В	FJ	2	386	8.16	5.50	4.23	10.5	10.5	К
DI M30	В	FJ	3	384	8.21	6.69	5.41	20.9	23.0	FJ
DI M30	В	FJ	4	410	8.96	7.50	5.55	24.1	26.4	FJ
DI M30	В	FJ	5	389	8.34	6.50	4.88	19.5	19.5	FJ+K
DI M30	В	FJ	6	413	8.31	5.90	4.91	20.7	21.5	FJ
DI M30	В	FJ	7	327	8.66	6.48	4.65	19.1	20.2	FJ
DI M30	В	FJ	8	380	7.92	7.17	5.74	27.1	28.1	FJ
DI M30	В	FJ	9	371	8.92	5.91	5.08	20.4	20.8	FJ
DI M30	В	FJ	10	442	8.43	6.48	5.20	26.9	27.4	FJ+K
DI M30	В	FJ	11	358	8.40	6.87	5.14	13.6	15.5	FJ+K
DI M30	В	FJ	12	412	8.32	6.05	5.20	19.9	23.2	FJ
DI M30	В	FJ	13	400	8.26	6.68	5.54	19.5	20.3	FJ
DI M30	В	FJ	14	393	8.06	6.60	5.42	21.4	24.6	FJ+繊維傾斜+K
DI M30	В	FJ	15	404	8.85	5.73	4.62	20.7	20.7	FJ
DI M30	В	FJ	16	439	8.46	7.13	5.33	24.7	24.7	FJ
DI M30	В	FJ	17	390	8.28	6.79	5.21	17.9	20.7	FJ
DI M30	В	FJ	18	436	8.34	7.04	5.47	20.4	20.4	FJ
DI M30	В	FJ	19	451	8.51	6.37	5.31	25.4	25.4	FJ+K
DI M30	В	FJ	20	435	8.49	7.60	6.26	27.5	27.5	FJ
DI M30	В	FJ	21	337	8.38	5.46	3.86	13.7	14.5	FJ+K
DI M30	В	FJ	22	343	8.50	6.82	5.70	20.3	24.5	FJ
DI M30	В	FJ	23	365	8.52	7.97	5.95	22.6	23.6	FJ
DI M30	В	FJ	24	366	8.32	5.95	4.59	18.2	20.2	FJ
DI M30	В	FJ	25	376	8.05	8.19	5.90	22.6	22.6	FJ
DI M30	В	FJ	26	384	8.18	7.03	5.48	22.9	24.7	FJ
DI M30	В	FJ	27	467	8.92	7.95	6.45	29.6	30.6	FJ
DI M30	В	FJ	28	380	7.98	7.00	5.41	24.6	24.6	FJ
DI M30	В	FJ	29	384	8.81	6.20	5.17	18.3	18.9	FJ
DI M30	В	FJ	30	402	7.74	7.50	6.08	21.8	23.0	FJ
DI M30	В	FJ	31	503	8.31	6.67	5.62	26.2	28.7	FJ
DI M30	В	FJ	32	445	7.76	7.74	6.03	24.6	25.4	FJ
DI M30	В	FJ	33	485	8.15	6.90	5.95	28.8	29.3	FJ
DI M30	В	FJ	34	429	8.98	5.69	5.04	21.6	22.0	FJ+K
DI M30	В	FJ	35	406	8.26	7.83	6.16	26.2	26.6	FJ
DI M30	В	FJ	36	405	8.47	6.54	5.15	19.0	19.0	FJ+K
DI M30	В	FJ	37	389	8.67	6.37	5.28	20.7	20.7	FJ
DI M30	В	FJ	38	421	8.60	6.80	5.45	21.1	23.2	FJ
DI M30	В	FJ	39	382	8.64	6.81	5.51	25.3	25.3	FJ
DI M30	В	FJ	40	382	7.99	6.62	5.33	13.4	16.7	FJ
DI M30	В	FJ	41	406	7.57	6.77	5.84	22.3	22.5	FJ
DI M30	В	FJ	42	425	8.18	6.16	4.85	20.1	20.1	FJ
DI M30	В	FJ	43	371	7.93	5.63	4.21	15.8	18.3	FJ
DI M30	В	FJ	44	368	7.29	7.46	5.93	18.9	20.0	FJ

注:便宜的に記号を M30 としている。破壊形態について、FJ はフィンガージョイント、K は節によるものである。

2.3.3.1.3 FJ ラミナの縦圧縮試験

(1) 試験方法

縦圧縮試験に先立ち密度を測定した。試験体長さを断面短辺の6倍とした縦圧縮試験を 行った。最大容量が3000kNの圧縮試験機(前川試験機製作所製A-300-B4)により荷重レン ジを300kNとして、球座を有する加力ヘッドにより載荷した。最大荷重に達するまでの時間 が約1~2分になるように荷重速度を調整した。試験終了後、最大荷重から縦圧縮強度を算 出した。また、破壊後の試験体全体を用いて全乾法で含水率を測定した。

試験の様子を写真2.3.3.1.3-1~2に示す。

写真 2.3.3.1.3-1~2 FJ ラミナの縦圧縮試験の様子

(2) 結果

FJ ラミナの縦圧縮試験の結果の概要を表 2.3.3.1.3-1 に示すともに、各グループの破壊 形態の例を写真 2.3.3.1.3-3~4 に示す。大部分は FJ 部の潰れにより破壊したが、インサ イジングありの試験体では、一部でインサイジングに沿った破壊も見られた(写真 2.3.3.1.3-5~6)。

試験体概要		密度	含水率	縦圧縮強度
		(kg/m ³)	(%)	(N/mm ²)
処理区分:ラミナ処理	試験体数	48	48	48
保存処理材:CUAZ	平均值	439	9.74	43.0
インサイジング:なし	最小值	377	8.98	28.4
記号:D	最大値	505	10.5	49.6
分類:外層用	標準偏差	29.6	0.285	4.02
たて継ぎ:FJ	変動係数(%)	6.73	2.93	9.35
処理区分:ラミナ処理	試験体数	32	32	32
保存処理材:CUAZ	平均值	381	9.78	29.3
インサイジング:なし	最小值	326	9.41	19.0
記号:D	最大値	432	10.2	35.7
分類:内層用	標準偏差	27.1	0.213	3.18
たて継ぎ:FJ	変動係数(%)	7.13	2.18	10.8
処理区分:ラミナ処理	試験体数	42	42	42
保存処理材:CUAZ	平均值	451	9.64	39.2
インサイジング:あり	最小値	391	8.93	27.6
記号:DI	最大値	545	10.2	48.1
分類:外層用	標準偏差	34.3	0.273	4.46
たて継ぎ:FJ	変動係数(%)	7.59	2.84	11.4
処理区分:ラミナ処理	試験体数	44	44	44
保存処理材:CUAZ	平均値	411	9.61	31.1
インサイジング:あり	最小値	343	9.14	26.5
記号:DI	最大値	474	10.4	36.9
分類:内層用	標準偏差	36.0	0.320	2.74
たて継ぎ:FJ	変動係数(%)	8.78	3.33	8.82

表 2.3.3.1.3-1 FJ ラミナの縦圧縮試験の結果の概要

写真 2.3.3.1.3-3~4 インサイジングなし外層用の破壊形態の例

写真 2.3.3.1.3-5~6 インサイジングあり外層用の破壊形態の例

縦圧縮強度の平均値および5%下限値を表2.3.3.1.3-2に示す。

JAS 等級または本試験体	平均值	下限值						
インサイジングなし外層用	43.0	32.2						
インサイジングあり外層用	39.2	29.1						
インサイジングなし内層用	29.3	19.9						
インサイジングあり内層用	31.1	26.5						

表 2.3.3.1.3-2 縦圧縮強度の平均値および 5%下限値(単位:N/mm²)

注:下限値は ASTM D2915 に基づいた信頼水準 75%の 95%下側許容限界値(順位法)である。

縦圧縮強度におけるインサイジングの有無の影響について、t 検定により平均値を比較したものを図 2.3.3.1.3-1~2 に示す。

外層用では有意にインサイジングなしの方が高い値を示した。逆に内層用では有意にイ ンサイジングありの方が高い値を示した。これらの原因は明らかではないが、内層用の試験 体について、フラットワイズ曲げ試験体と後述する縦引張試験体の縦振動法のヤング係数 はインサイジングありの方がインサイジングなしよりも平均値で有意に高い値を示してお り、このことが影響した可能性がある。なお、縦圧縮試験体は長さが短いこともあり縦振動 法のヤング係数は測定していない。

縦圧縮試験のすべての結果を表 2.3.3.1.3-3~6 に示す。

表 2.3.3.1.3-3 CUAZ 処理・インサイジングなし・外層用の縦圧縮試験結果

(kg/m ³) (%) (N/mm ²) D M60 C FJ 2 396 9.36 46.6 D M60 C FJ 3 422 9.93 43.7 D M60 C FJ 4 453 9.88 46.5 D M60 C FJ 5 439 10.0 41.8 D M60 C FJ 7 454 10.4 47.2 D M60 C FJ 9 481 9.38 49.6 D M60 C FJ 10 436 9.87 41.9 D M60 C FJ 11 377 9.74 39.7 D M60 C FJ 13 452 9.48 46.5 D M60 C FJ 13 452 9.43 32.2 D M60 C FJ 14 111 <th></th> <th>試影</th> <th></th> <th>番号</th> <th></th> <th>密度</th> <th>含水率</th> <th>縦圧縮強度</th>		試影		番号		密度	含水率	縦圧縮強度
D M60 C FJ 1 505 9.36 46.6 D M60 C FJ 2 396 9.78 36.6 D M60 C FJ 3 422 9.93 43.7 D M60 C FJ 5 439 10.0 41.8 D M60 C FJ 6 461 10.1 49.1 D M60 C FJ 7 454 10.4 47.2 D M60 C FJ 9 481 9.38 49.6 D M60 C FJ 10 436 9.87 41.9 D M60 C FJ 11 377 9.74 39.7 D M60 C FJ 13 452 9.48 46.5 D M60 C FJ 13 452 9.43 32 D						(kg/m³)	(%)	(N/mm ²)
D M60 C FJ 2 396 9.78 36.6 D M60 C FJ 3 422 9.93 43.7 D M60 C FJ 5 439 10.0 41.8 D M60 C FJ 6 461 10.1 49.1 D M60 C FJ 7 454 10.4 47.2 D M60 C FJ 9 481 9.38 49.6 D M60 C FJ 10 436 9.87 41.9 D M60 C FJ 11 377 9.74 39.7 D M60 C FJ 14 411 9.82 33.1 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 17 431 10.1 43.0 D <	D	M60	С	FJ	1	505	9.36	46.6
D M60 C FJ 3 422 9.93 43.7 D M60 C FJ 5 439 10.0 41.8 D M60 C FJ 5 439 10.0 41.8 D M60 C FJ 7 454 10.4 47.2 D M60 C FJ 9 481 9.38 49.6 D M60 C FJ 10 436 9.87 41.9 D M60 C FJ 11 377 9.74 39.7 D M60 C FJ 13 452 9.48 46.5 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 17 431 10.1 43.0 D M60 C FJ 18 431 9.55 42.7 D	D	M60	С	FJ	2	396	9.78	36.6
D M60 C FJ 4 453 9.88 46.5 D M60 C FJ 5 439 10.0 41.8 D M60 C FJ 6 461 10.1 49.1 D M60 C FJ 7 454 10.4 47.2 D M60 C FJ 9 481 9.38 49.6 D M60 C FJ 10 436 9.87 41.9 D M60 C FJ 11 377 9.74 39.7 D M60 C FJ 12 444 9.41 46.0 D M60 C FJ 13 452 9.48 43.2 D M60 C FJ 14 411 9.82 33.1 D M60 C FJ 18 431 9.55 42.7 D	D	M60	С	FJ	3	422	9.93	43.7
D M60 C FJ 5 439 10.0 41.8 D M60 C FJ 6 461 10.1 49.1 D M60 C FJ 7 454 10.4 47.2 D M60 C FJ 9 481 9.38 49.6 D M60 C FJ 10 436 9.87 41.9 D M60 C FJ 11 377 9.74 39.7 D M60 C FJ 12 444 9.41 46.0 D M60 C FJ 13 452 9.48 46.5 D M60 C FJ 14 411 9.82 33.1 D M60 C FJ 18 431 9.55 42.7 D M60 C FJ 20 492 8.98 47.0 D	D	M60	С	FJ	4	453	9.88	46.5
D M60 C FJ 6 461 10.1 49.1 D M60 C FJ 7 454 10.4 47.2 D M60 C FJ 9 481 9.38 49.6 D M60 C FJ 10 436 9.87 41.9 D M60 C FJ 12 444 9.41 46.0 D M60 C FJ 13 452 9.48 46.5 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 18 431 9.55 42.7 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D	D	M60	С	FJ	5	439	10.0	41.8
D M60 C FJ 7 454 10.4 47.2 D M60 C FJ 8 400 10.5 38.5 D M60 C FJ 9 481 9.38 49.6 D M60 C FJ 10 436 9.87 41.9 D M60 C FJ 12 444 9.41 46.0 D M60 C FJ 12 444 9.41 46.5 D M60 C FJ 15 481 9.91 47.1 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 18 431 9.55 42.7 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D	D	M60	С	FJ	6	461	10.1	49.1
D M60 C FJ 8 400 10.5 38.5 D M60 C FJ 9 481 9.38 49.6 D M60 C FJ 10 436 9.87 41.9 D M60 C FJ 11 377 9.74 39.7 D M60 C FJ 12 4444 9.41 46.0 D M60 C FJ 13 452 9.48 46.5 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 17 431 10.1 43.0 D M60 C FJ 120 492 8.98 47.0 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D	D	M60	С	FJ	7	454	10.4	47.2
D M60 C FJ 9 481 9.38 49.6 D M60 C FJ 10 436 9.87 41.9 D M60 C FJ 11 377 9.74 39.7 D M60 C FJ 12 444 9.41 46.0 D M60 C FJ 14 411 9.82 33.1 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 17 431 10.1 43.0 D M60 C FJ 19 415 9.94 39.2 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 23 413 9.71 43.7 D	D	M60	С	FJ	8	400	10.5	38.5
D M60 C FJ 10 436 9.87 41.9 D M60 C FJ 11 377 9.74 39.7 D M60 C FJ 12 444 9.41 46.0 D M60 C FJ 13 452 9.48 46.5 D M60 C FJ 14 411 9.82 33.1 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 17 431 10.1 43.0 D M60 C FJ 19 415 9.94 39.2 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 24 448 9.88 36.6 D	D	M60	С	FJ	9	481	9.38	49.6
D M60 C FJ 11 377 9.74 39.7 D M60 C FJ 12 444 9.41 46.0 D M60 C FJ 13 452 9.48 46.5 D M60 C FJ 15 481 9.91 47.1 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 17 431 10.1 43.0 D M60 C FJ 19 415 9.94 39.2 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 24 448 9.88 38.6 D M60 C FJ 25 407 9.61 41.7 D	D	M60	С	FJ	10	436	9.87	41.9
D M60 C FJ 12 444 9.41 46.0 D M60 C FJ 13 452 9.48 46.5 D M60 C FJ 14 411 9.82 33.1 D M60 C FJ 15 481 9.91 47.1 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 17 431 10.1 43.0 D M60 C FJ 19 415 9.94 39.2 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.2 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 24 448 9.88 39.6 D	D	M60	С	FJ	11	377	9.74	39.7
D M60 C FJ 13 452 9.48 46.5 D M60 C FJ 14 411 9.82 33.1 D M60 C FJ 15 481 9.91 47.1 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 17 431 10.1 43.0 D M60 C FJ 19 415 9.94 39.2 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 22 431 9.95 46.2 D M60 C FJ 24 448 9.88 39.6 D M60 C FJ 25 407 9.61 41.7 D M60 C FJ 27 455 9.94 42.4 D	D	M60	С	FJ	12	444	9.41	46.0
D M60 C FJ 14 411 9.82 33.1 D M60 C FJ 15 481 9.91 47.1 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 17 431 10.1 43.0 D M60 C FJ 19 415 9.94 39.2 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 22 431 9.95 46.2 D M60 C FJ 24 448 9.88 39.6 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D	D	M60	С	FJ	13	452	9.48	46.5
D M60 C FJ 15 481 9.91 47.1 D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 17 431 10.1 43.0 D M60 C FJ 18 431 9.55 42.7 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 24 448 9.88 39.6 D M60 C FJ 25 407 9.61 41.7 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D	D	M60	С	FJ	14	411	9.82	33.1
D M60 C FJ 16 428 9.86 43.2 D M60 C FJ 17 431 10.1 43.0 D M60 C FJ 18 431 9.55 42.7 D M60 C FJ 19 415 9.94 39.2 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 25 407 9.61 41.7 D M60 C FJ 26 402 9.88 38.6 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D	D	M60	С	FJ	15	481	9.91	47.1
D M60 C FJ 17 431 10.1 43.0 D M60 C FJ 18 431 9.55 42.7 D M60 C FJ 19 415 9.94 39.2 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 22 431 9.95 46.2 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 24 448 9.88 39.6 D M60 C FJ 25 407 9.61 41.7 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D	D	M60	С	FJ	16	428	9.86	43.2
D M60 C FJ 18 431 9.55 42.7 D M60 C FJ 19 415 9.94 39.2 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 22 431 9.95 46.2 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 24 448 9.88 39.6 D M60 C FJ 26 402 9.88 38.6 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D	D	M60	С	FJ	17	431	10.1	43.0
D M60 C FJ 19 415 9.94 39.2 D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 22 431 9.95 46.2 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 24 448 9.88 39.6 D M60 C FJ 25 407 9.61 41.7 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 33 457 9.47 43.2 D	D	M60	С	FJ	18	431	9.55	42.7
D M60 C FJ 20 492 8.98 47.0 D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 22 431 9.95 46.2 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 24 448 9.88 39.6 D M60 C FJ 25 407 9.61 41.7 D M60 C FJ 26 402 9.88 38.6 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 33 457 9.47 43.2 D	D	M60	С	FJ	19	415	9.94	39.2
D M60 C FJ 21 430 9.52 46.7 D M60 C FJ 22 431 9.95 46.2 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 24 448 9.88 39.6 D M60 C FJ 25 407 9.61 41.7 D M60 C FJ 26 402 9.88 38.6 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 33 457 9.47 43.2 D M60 C FJ 35 426 9.96 28.4 D	D	M60	С	FJ	20	492	8.98	47.0
D M60 C FJ 22 431 9.95 46.2 D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 24 448 9.88 39.6 D M60 C FJ 25 407 9.61 41.7 D M60 C FJ 26 402 9.88 38.6 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 37 410 9.64 43.6 D	D	M60	С	FJ	21	430	9.52	46.7
D M60 C FJ 23 413 9.71 43.7 D M60 C FJ 24 448 9.88 39.6 D M60 C FJ 25 407 9.61 41.7 D M60 C FJ 26 402 9.88 38.6 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 28 414 9.60 44.3 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 37 410 9.64 43.6 D	D	M60	С	FJ	22	431	9.95	46.2
D M60 C FJ 24 448 9.88 39.6 D M60 C FJ 25 407 9.61 41.7 D M60 C FJ 26 402 9.88 38.6 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 28 414 9.60 44.3 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 34 466 10.0 40.7 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 37 410 9.64 43.6 D	D	M60	С	FJ	23	413	9.71	43.7
D M60 C FJ 25 407 9.61 41.7 D M60 C FJ 26 402 9.88 38.6 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 28 414 9.60 44.3 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 34 466 10.0 40.7 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 39 477 9.87 44.8 D	D	M60	С	FJ	24	448	9.88	39.6
D M60 C FJ 26 402 9.88 38.6 D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 28 414 9.60 44.3 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 33 457 9.47 43.2 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 36 414 9.81 42.6 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 39 477 9.87 44.8 D	D	M60	С	FJ	25	407	9.61	41.7
D M60 C FJ 27 455 9.94 42.4 D M60 C FJ 28 414 9.60 44.3 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 33 457 9.47 43.2 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 38 456 9.63 47.0 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 41 418 9.56 43.7 D	D	M60	С	FJ	26	402	9.88	38.6
D M60 C FJ 28 414 9.60 44.3 D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 33 457 9.47 43.2 D M60 C FJ 34 466 10.0 40.7 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D	D	M60	С	FJ	27	455	9.94	42.4
D M60 C FJ 29 435 9.38 46.4 D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 33 457 9.47 43.2 D M60 C FJ 34 466 10.0 40.7 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 36 414 9.81 42.6 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D	D	M60	С	FJ	28	414	9.60	44.3
D M60 C FJ 30 447 9.54 41.8 D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 33 457 9.47 43.2 D M60 C FJ 34 466 10.0 40.7 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 36 414 9.81 42.6 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D	D	M60	С	FJ	29	435	9.38	46.4
D M60 C FJ 31 410 9.98 41.2 D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 33 457 9.47 43.2 D M60 C FJ 34 466 10.0 40.7 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 36 414 9.81 42.6 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D	D	M60	С	FJ	30	447	9.54	41.8
D M60 C FJ 32 427 9.52 47.2 D M60 C FJ 33 457 9.47 43.2 D M60 C FJ 34 466 10.0 40.7 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 36 414 9.81 42.6 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 38 456 9.63 47.0 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D M60 C FJ 43 466 9.63 44.0 D	D	M60	С	FJ	31	410	9.98	41.2
D M60 C FJ 33 457 9.47 43.2 D M60 C FJ 34 466 10.0 40.7 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 36 414 9.81 42.6 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 38 456 9.63 47.0 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 45 420 9.78 44.6 D	D	M60	С	FJ	32	427	9.52	47.2
D M60 C FJ 34 466 10.0 40.7 D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 36 414 9.81 42.6 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 38 456 9.63 47.0 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 44 469 9.87 44.6 D M60 C FJ 45 420 9.78 44.0 D	D	M60	С	FJ	33	457	9.47	43.2
D M60 C FJ 35 426 9.96 28.4 D M60 C FJ 36 414 9.81 42.6 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 38 456 9.63 47.0 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 45 42.0 9.78 44.6 D M60 C FJ 45 42.0 9.78 44.0 D M60 C FJ 46 481 9.44 40.8 D	D	M60	С	FJ	34	466	10.0	40.7
D M60 C FJ 36 414 9.81 42.6 D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 38 456 9.63 47.0 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 45 420 9.78 44.6 D M60 C FJ 45 420 9.78 44.0 D M60 C FJ 47 439 9.44 40.8 D	D	M60	С	FJ	35	426	9.96	28.4
D M60 C FJ 37 410 9.64 43.6 D M60 C FJ 38 456 9.63 47.0 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 44 469 9.87 44.6 D M60 C FJ 45 420 9.78 44.0 D M60 C FJ 46 481 9.44 40.8 D M60 C FJ 47 439 9.90 44.6 D M60 C FJ 48 394 9.46 37.7	D	M60	С	FJ	36	414	9.81	42.6
D M60 C FJ 38 456 9.63 47.0 D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 44 469 9.87 44.6 D M60 C FJ 45 420 9.78 44.0 D M60 C FJ 46 481 9.44 40.8 D M60 C FJ 47 439 9.90 44.6 D M60 C FJ 47 439 9.46 37.7	D	M60	С	FJ	37	410	9.64	43.6
D M60 C FJ 39 477 9.87 44.8 D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 44 469 9.87 44.6 D M60 C FJ 45 420 9.78 44.0 D M60 C FJ 46 481 9.44 40.8 D M60 C FJ 47 439 9.90 44.6 D M60 C FJ 48 394 9.46 37.7	D	M60	С	FJ	38	456	9.63	47.0
D M60 C FJ 40 475 9.28 39.2 D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 44 469 9.87 44.6 D M60 C FJ 45 420 9.78 44.0 D M60 C FJ 46 481 9.44 40.8 D M60 C FJ 47 439 9.90 44.6 D M60 C FJ 47 439 9.46 37.7	D	M60	С	FJ	39	477	9.87	44.8
D M60 C FJ 41 418 9.56 43.7 D M60 C FJ 42 492 9.67 46.1 D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 44 469 9.87 44.6 D M60 C FJ 45 420 9.78 44.0 D M60 C FJ 46 481 9.44 40.8 D M60 C FJ 47 439 9.90 44.6 D M60 C FJ 48 394 9.46 37.7	D	M60	С	FJ	40	475	9.28	39.2
D M60 C FJ 42 492 9.67 46.1 D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 44 469 9.87 44.6 D M60 C FJ 45 420 9.78 44.0 D M60 C FJ 46 481 9.44 40.8 D M60 C FJ 47 439 9.90 44.6 D M60 C FJ 48 394 9.46 37.7	D	M60	С	FJ	41	418	9.56	43.7
D M60 C FJ 43 466 9.63 44.0 D M60 C FJ 44 469 9.87 44.6 D M60 C FJ 45 420 9.78 44.0 D M60 C FJ 46 481 9.44 40.8 D M60 C FJ 47 439 9.90 44.6 D M60 C FJ 48 394 9.46 37.7	D	M60	С	FJ	42	492	9.67	46.1
D M60 C FJ 44 469 9.87 44.6 D M60 C FJ 45 420 9.78 44.0 D M60 C FJ 46 481 9.44 40.8 D M60 C FJ 47 439 9.90 44.6 D M60 C FJ 48 394 9.46 37.7	D	M60	С	FJ	43	466	9.63	44.0
D M60 C FJ 45 420 9.78 44.0 D M60 C FJ 46 481 9.44 40.8 D M60 C FJ 47 439 9.90 44.6 D M60 C FJ 48 394 9.46 37.7	D	M60	С	FJ	44	469	9.87	44.6
D M60 C FJ 46 481 9.44 40.8 D M60 C FJ 47 439 9.90 44.6 D M60 C FJ 48 394 9.46 37.7	D	M60	С	FJ	45	420	9.78	44.0
D M60 C FJ 47 439 9.90 44.6 D M60 C FJ 48 394 9.46 37.7	D	M60	С	FJ	46	481	9.44	40.8
D M60 C FJ 48 394 9.46 37.7	D	M60	С	FJ	47	439	9.90	44.6
	D	M60	С	FJ	48	394	9.46	37.7

注:便宜的に記号をM60としている。

表 2.3.3.1.3-4 CUAZ 処理・インサイジングなし・内層用の縦圧縮試験結果

	試懸	食体者	番号		密度	含水率	縦圧縮強度
					(kg/m ³)	(%)	(N/mm ²)
D	M30	С	FJ	1	383	10.1	26.8
D	M30	С	FJ	2	358	9.92	25.6
D	M30	С	FJ	3	358	10.1	27.7
D	M30	С	FJ	4	335	9.89	30.2
D	M30	С	FJ	5	326	9.71	28.1
D	M30	С	FJ	6	383	9.85	32.1
D	M30	С	FJ	7	339	10.1	26.9
D	M30	С	FJ	8	381	9.72	29.1
D	M30	С	FJ	9	369	9.56	32.6
D	M30	С	FJ	10	353	9.71	30.2
D	M30	С	FJ	11	371	9.54	32.4
D	M30	С	FJ	12	371	9.55	26.4
D	M30	С	FJ	13	365	10.0	29.0
D	M30	С	FJ	14	414	9.44	30.3
D	M30	С	FJ	15	432	9.95	19.0
D	M30	С	FJ	16	407	9.68	30.2
D	M30	С	FJ	17	428	10.2	26.0
D	M30	С	FJ	18	369	10.1	24.4
D	M30	С	FJ	19	378	9.66	32.9
D	M30	С	FJ	20	373	9.69	33.2
D	M30	С	FJ	21	342	9.76	26.3
D	M30	С	FJ	22	369	9.70	30.1
D	M30	С	FJ	23	391	9.84	35.7
D	M30	С	FJ	24	381	9.94	29.3
D	M30	С	FJ	25	428	9.64	31.5
D	M30	С	FJ	26	411	9.41	31.8
D	M30	С	FJ	27	373	9.63	29.5
D	M30	С	FJ	28	403	9.66	30.9
D	M30	С	FJ	29	393	9.58	30.5
D	M30	С	FJ	30	395	9.90	27.6
D	M30	С	FJ	31	391	9.51	30.9
D	M30	С	FJ	32	410	9.72	31.0
	泊	E:1	更宜的	りに記	已号を M30 と	としている	5.

表 2.3.3.1.3-5	CUAZ 処理・インサイジングあり・外層用の縦圧縮試験結果

	試懸	食体:	番号		密度	含水率	縦圧縮強度
					(kg/m ³)	(%)	(N/mm ²)
D	M60	С	FJ	1	412	10.2	37.5
DI	M60	С	FJ	2	391	10.1	37.4
D	M60	С	FJ	3	415	9.82	39.6
D	M60	С	FJ	4	441	9.78	42.6
D	M60	С	FJ	5	443	9.79	36.5
DI	M60	С	FJ	6	432	9.63	39.2
D	M60	С	FJ	7	449	9.79	35.8
DI	M60	С	FJ	8	421	9.82	30.2
DI	M60	С	FJ	9	475	9.86	40.0
DI	M60	С	FJ	10	507	9.26	43.2
DI	M60	С	FJ	11	463	10.0	41.2
D	M60	С	FJ	12	440	9.58	40.2
D	M60	С	FJ	13	439	9.85	45.5
D	M60	С	FJ	14	458	9.40	47.0
DI	M60	С	FJ	15	449	9.57	37.6
DI	M60	С	FJ	16	432	9.66	37.9
DI	M60	С	FJ	17	460	9.42	39.6
D	M60	С	FJ	18	481	9.66	44.1
DI	M60	С	FJ	19	523	9.28	43.2
D	M60	С	FJ	20	433	9.51	42.5
DI	M60	С	FJ	21	494	9.58	42.9
DI	M60	С	FJ	22	437	9.19	37.3
DI	M60	С	FJ	23	445	9.54	33.0
DI	M60	С	FJ	24	412	10.0	35.7
D	M60	С	FJ	25	539	9.73	48.1
D	M60	С	FJ	26	457	9.41	44.5
DI	M60	С	FJ	27	545	9.71	42.1
D	M60	С	FJ	28	498	9.81	39.0
D	M60	С	FJ	29	439	9.36	39.2
DI	M60	С	FJ	30	437	9.56	37.8
DI	M60	С	FJ	31	406	9.88	37.2
D	M60	С	FJ	32	411	9.63	30.9
DI	M60	С	FJ	33	450	9.42	44.8
DI	M60	С	FJ	34	453	9.80	27.6
D	M60	С	FJ	35	432	9.74	32.3
DI	M60	С	FJ	36	424	9.89	40.6
DI	M60	С	FJ	37	437	9.77	36.5
DI	M60	С	FJ	38	484	9.38	40.0
DI	M60	С	FJ	39	452	9.54	34.0
DI	M60	С	FJ	40	439	9.70	40.9
DI	M60	С	FJ	41	435	9.05	40.7
DI	M60	С	FJ	42	464	8.93	42.0

注:便宜的に記号をM60としている。

表 2.3.3.1.3-6 CUAZ 処理・インサイジングあり・内層用の縦圧縮試験結果

	試影	食体:	番号		密度	含水率	縦圧縮強度
					(kg/m ³)	(%)	(N/mm ²)
D	M30	С	FJ	1	379	9.67	27.2
DI	M30	С	FJ	2	405	10.1	30.3
D	M30	С	FJ	3	343	10.0	29.5
D	M30	С	FJ	4	461	10.3	35.3
DI	M30	С	FJ	5	429	9.98	33.2
D	M30	С	FJ	6	395	9.81	27.4
DI	M30	С	FJ	7	345	10.4	29.1
DI	M30	С	FJ	8	371	9.97	27.1
DI	M30	С	FJ	9	387	10.1	27.4
D	M30	С	FJ	10	447	9.69	34.2
DI	M30	С	FJ	11	354	9.51	29.2
D	M30	С	FJ	12	449	9.44	30.6
DI	M30	С	FJ	13	393	10.2	33.7
DI	M30	С	FJ	14	397	9.50	32.8
DI	M30	С	FJ	15	471	9.57	29.2
DI	M30	С	FJ	16	459	9.46	32.2
D	M30	С	FJ	17	424	9.93	33.8
DI	M30	С	FJ	18	463	9.60	36.9
DI	M30	С	FJ	19	446	9.67	31.1
D	M30	С	FJ	20	442	9.73	30.7
DI	M30	С	FJ	21	411	9.32	31.4
D	M30	С	FJ	22	436	9.35	29.8
D	M30	С	FJ	23	352	9.60	31.9
DI	M30	С	FJ	24	411	9.25	28.5
D	M30	С	FJ	25	343	9.71	30.9
D	M30	С	FJ	26	381	9.24	32.0
DI	M30	С	FJ	27	415	9.32	29.8
D	M30	С	FJ	28	408	9.44	26.6
DI	M30	С	FJ	29	380	10.0	27.2
DI	M30	С	FJ	30	397	9.38	32.0
DI	M30	С	FJ	31	427	9.46	30.3
DI	M30	С	FJ	32	469	9.41	33.6
DI	M30	С	FJ	33	384	9.36	30.8
D	M30	С	FJ	34	474	9.14	33.9
DI	M30	С	FJ	35	390	9.21	34.6
DI	M30	С	FJ	36	415	9.67	33.8
D	M30	С	FJ	37	419	9.36	36.2
DI	M30	С	FJ	38	456	9.34	34.0
DI	M30	С	FJ	39	396	9.78	30.0
D	M30	С	FJ	40	413	9.26	27.0
DI	M30	С	FJ	41	381	9.25	26.5
DI	M30	С	FJ	42	418	9.39	31.4
DI	M30	С	FJ	43	405	9.62	34.2
DI	M30	С	FJ	44	424	9.26	32.1

注:便宜的に記号を M30 としている。

2.3.3.1.4 FJ ラミナの縦引張試験

(1) 試験方法

縦引張試験に先立ち、密度、縦振動法によるヤング係数を測定した。直交集成板の JAS の ラミナの引張り試験に準じて縦引張試験を行った。ただし、直交集成板の JAS ではチャック 間が 600mm 以上であるが、試験機の都合上、チャック間を 530mm とした。片側のチャック部 分の長さは 600mm とした。試験には最大容量が約 400kN のプルーフローダー(飯田工業製 NET-40)を用いた。最大荷重に達するまでの時間が約 1~2 分になるように荷重速度を調整 した。試験終了後、最大荷重から縦引張強度を算出した。また、破壊後の試験体の FJ の両 側から長さが約 30mm の含水率測定用試験体を 1 体ずつ切り出し、全乾法で含水率を測定し た。試験体の含水率は両含水率試験体の平均値とした。

試験の様子を写真2.3.3.1.4-1~2に示す。

写真 2.3.3.1.4-1~2 FJ ラミナの縦引張試験の様子

(2) 結果

FJ ラミナの縦引張試験の結果の概要を表 2.3.3.1.4-1 に示すともに、各グループの破壊 形態の例を写真 2.3.3.1.4-3~10 に示す。大部分の試験体が FJ 部で破壊した。ただし、写 真に示したように、一部の試験体で節、FJ 部から離れた無欠点部のように見える木材部分 で破壊した試験体も存在した。数体で FJ 抜けした試験体があったが、これらの試験体は他 の試験体に比べて縦引張強度が大きく低下していた。

		密度	含水率	縦振動法の ヤング係数	縦引張強度
		(kg/m ³)	(%)	(kN/mm²)	(N/mm²)
処理区分:ラミナ処理	試験体数	48	48	48	48
保存処理材:CUAZ	平均値	443	9.74	10.1	23.7
インサイジング:なし	最小値	376	8.86	7.27	5.59
記号:D	最大値	521	11.2	13.3	36.0
分類:外層用	標準偏差	32.6	0.479	1.34	6.49
たて継ぎ:FJ	変動係数(%)	7.37	4.92	13.3	27.5
処理区分:ラミナ処理	試験体数	32	32	32	32
保存処理材:CUAZ	平均值	368	9.23	5.45	12.8
インサイジング:なし	最小值	308	8.79	4.47	4.21
記号:D	最大値	424	10.3	7.06	20.8
分類:内層用	標準偏差	27.3	0.318	0.512	3.78
たて継ぎ:FJ	変動係数(%)	7.42	3.44	9.39	29.6
処理区分:ラミナ処理	試験体数	42	42	42	42
保存処理材:CUAZ	平均値	444	9.15	10.2	21.5
インサイジング:あり	最小値	376	8.52	7.52	6.06
記号:DI	最大値	517	9.85	15.2	45.1
分類:外層用	標準偏差	33.4	0.282	1.55	6.38
たて継ぎ:FJ	変動係数(%)	7.53	3.09	15.3	29.7
処理区分:ラミナ処理	試験体数	44	44	44	44
保存処理材:CUAZ	平均値	408	9.22	6.83	14.4
インサイジング:あり	最小値	332	8.23	5.07	8.47
記号:DI	最大値	478	10.1	8.72	19.5
分類:内層用	標準偏差	33.4	0.391	0.706	2.85
たて継ぎ:FJ	変動係数(%)	8.20	4.24	10.3	19.7

表 2.3.3.1.4-1 FJ ラミナの縦引張試験の結果の概要

写真 2.3.3.1.4-3~4 インサイジングなし外層用の破壊形態の例 (左:FJによる破壊、右:FJ抜けした試験体)

写真 2.3.3.1.4-5~6 インサイジングなし内層用の破壊形態の例 (左:FJによる破壊、右:節による破壊)

写真 2.3.3.1.4-7~8 インサイジングあり外層用の破壊形態の例 (左:FJ+節による破壊、右:無欠点部での破壊)

写真 2.3.3.1.4-9~10 インサイジングあり内層用の破壊形態の例 (左:FJによる破壊、右:節による破壊)

縦引張強度の平均値および 5%下限値を JAS 基準値と比較したものを表 2.3.3.1.4-2 に示す。

外層用の平均値は、インサイジングの有無にかかわらず M90A 相当であった。一方、下限 値は、インサイジングなしは M30A 相当、インサイジングありは M30A を下回った。これは、 いくつかの試験体で FJ 抜けがあったこと、一部の試験体で FJ 抜けではないものの引張強 度が低い試験体が存在したためと考えられる。なお、正規分布を仮定した 5%下限値では、 インサイジングなしは 11.9N/mm² で順位法と同じく M30A 相当、インサイジングありは 9.82N/mm²で順位法と異なり M30A 相当となった。

内層用の平均値は、インサイジングの有無にかかわらず M30A 相当であった。一方、下限 値は、インサイジングありは M30A 相当であったが、インサイジングなしは M30A を下回っ た。なお、正規分布を仮定した 5%下限値では、インサイジングなしは 5.75N/mm² でやはり M30A を下回った。インサイジングなしの試験体では、1 体 FJ 抜けしたものがあったことが 影響した可能性がある。

JAS 等級または本試験体	平均值	下限值
M90A	20.5	15.5
M60A	16.0	12.0
M30A	11.5	8.5
インサイジングなし外層用	23.7	9.07
インサイジングあり外層用	21.5	7.19
インサイジングなし内層用	12.8	4.58
インサイジングあり内層用	14.4	8.92

表 2.3.3.1.4-2 縦引張強度の JAS 基準値との比較(単位:kN/mm²)

注:下限値は ASTM D2915 に基づいた信頼水準 75%の 95%下側許容限界値(順位法)である。

縦振動法のヤング係数、縦引張強度におけるインサイジングの有無の影響について、t検 定により平均値を比較したものを図2.3.3.1.4-1~4 に示す。外層用では、縦振動法のヤン グ係数についてインサイジングの有無による差はなく、縦引張強度ではややインサイジン グありの方が小さい平均値を示したが、こちらも有意差はなかった。一方、内層用では、縦 振動法のヤング係数、縦引張強度ともにインサイジングありの方が有意に平均値は大きく なった。インサイジングにより縦振動法によるヤング係数と縦引張強度が増加することは 考えにくいため、両者の有意差はインサイジング前のヤング係数に違いがあったと考えら れる。

図 2.3.3.1.4-1~2 インサイジングの有無による平均値の比較(外層用)

図 2.3.3.1.4-3~4 インサイジングの有無による平均値の比較(内層用)

FJ ラミナの縦引張試験のすべての結果を表 2.3.3.1.4-3~6 に示す。

表 2.3.3.1.4-3 CUAZ 処理・インサイジングなし・外層用の縦引張試験結果

	試験	体番	号		密度	含水率	縦振動法の ヤング係数	縦引張強度	破壊形態
					(kg/m³)	(%)	(kN/mm ²)	(N/mm ²)	
D	M60	Т	FJ	1	496	10.3	9.27	24.0	FJ
D	M60	Т	FJ	2	426	9.14	13.3	27.0	FJ
D	M60	Т	FJ	3	398	10.3	9.89	29.7	FJ
D	M60	Т	FJ	4	411	10.0	11.3	31.0	FJ
D	M60	Т	FJ	5	423	10.1	9.71	22.2	チャック内K
D	M60	Т	FJ	6	464	9.70	11.1	25.3	FJ
D	M60	Т	FJ	7	449	9.69	12.5	24.0	FJ
D	M60	Т	FJ	8	453	10.4	13.3	36.0	FJ
D	M60	Т	FJ	9	434	9.61	11.4	31.6	FJ
D	M60	Т	FJ	10	458	9.58	7.27	21.7	FJ
D	M60	Т	FJ	11	427	9.19	9.16	22.2	FJ
D	M60	Т	FJ	12	442	9.21	9.40	12.4	FJ(一部FJ抜け)
D	M60	Т	FJ	13	396	8.86	11.3	35.7	FJ
D	M60	Т	FJ	14	446	9.92	10.8	25.8	FJ
D	M60	Т	FJ	15	452	10.5	10.9	25.9	К
D	M60	Т	FJ	16	469	9.38	8.97	9.9	К
D	M60	Т	FJ	17	464	10.2	11.0	22.6	FJ+K
D	M60	Т	FJ	18	392	10.0	10.9	30.5	FJ
D	M60	Т	FJ	19	443	9.57	9.07	18.8	FJ
D	M60	Т	FJ	20	493	9.54	9.00	17.1	FJ+K
D	M60	Т	FJ	21	443	9.19	9.64	24.7	FJ
D	M60	Т	FJ	22	376	9.35	8.50	15.3	FJ
D	M60	Т	FJ	23	488	10.5	9.65	24.0	FJ+K
D	M60	Т	FJ	24	426	9.51	10.9	27.3	К
D	M60	Т	FJ	25	388	9.73	10.2	24.9	FJ
D	M60	Т	FJ	26	442	9.29	8.26	14.1	К
D	M60	Т	FJ	27	456	11.2	8.53	21.2	FJ
D	M60	Т	FJ	28	445	10.1	8.80	18.2	FJ+K
D	M60	Т	FJ	29	422	9.15	9.22	26.5	FJ
D	M60	Т	FJ	30	457	9.79	10.3	23.4	FJ
D	M60	Т	FJ	31	400	9.77	11.0	32.6	FJ
D	M60	Т	FJ	32	479	9.20	10.5	5.59	FJ (FJ抜け)
D	M60	Т	FJ	33	427	9.84	8.78	21.3	FJ
D	M60	Т	FJ	34	482	10.1	10.3	13.3	К
D	M60	Т	FJ	35	417	10.2	11.1	29.2	К
D	M60	Т	FJ	36	469	9.67	11.0	24.6	FJ
D	M60	Т	FJ	37	395	9.34	11.0	29.6	FJ
D	M60	т	FJ	38	488	9.82	10.7	22.9	FJ
D	M60	Т	FJ	39	447	10.4	8.62	19.8	К
D	M60	Т	FJ	40	433	9.08	8.63	20.8	FJ
D	M60	т	FJ	41	405	9.50	9.05	18.6	К
D	M60	т	FJ	42	521	9.46	11.2	28.5	FJ
D	M60	Т	FJ	43	451	9.41	9.60	30.7	FJ
D	M60	т	FJ	44	466	9.64	7.65	18.8	FJ
D	M60	т	FJ	45	434	9.22	9.85	23.9	FJ+K
D	M60	Т	FJ	46	502	10.5	11.6	32.4	FJ
D	M60	Т	FJ	47	417	9.51	10.6	29.1	FJ+K
D	M60	Т	FJ	48	436	9.78	8.45	20.7	FJ

注:便宜的に記号をM60としている。破壊形態について、FJはフィンガージョイント、Kは節によるものである。

	試験	体番	号		密度	含水率	縦振動法の ヤング係数	縦引張強度	破壊形態
					(kg/m ³)	(%)	(kN/mm ²)	(N/mm ²)	
D	M30	Т	FJ	1	320	9.28	6.30	16.3	FJ
D	M30	Т	FJ	2	308	9.39	6.14	14.0	FJ
D	M30	Т	FJ	3	327	9.08	5.14	8.11	FJ
D	M30	Т	FJ	4	334	9.07	5.95	11.8	FJ
D	M30	Т	FJ	5	342	9.43	5.29	11.1	FJ
D	M30	Т	FJ	6	365	9.47	5.12	16.4	FJ
D	M30	Т	FJ	7	359	9.28	4.82	8.58	FJ
D	M30	Т	FJ	8	396	8.92	5.44	16.4	К
D	M30	Т	FJ	9	358	9.27	5.76	14.0	FJ
D	M30	Т	FJ	10	356	9.61	5.29	14.6	FJ
D	M30	Т	FJ	11	377	9.33	5.01	7.06	FJ
D	M30	Т	FJ	12	379	8.97	5.56	4.21	FJ (FJ抜け)
D	M30	Т	FJ	13	344	8.88	5.93	10.7	FJ
D	M30	Т	FJ	14	380	9.56	7.06	14.7	FJ
D	M30	Т	FJ	15	424	9.19	5.29	15.9	FJ
D	M30	Т	FJ	16	389	9.37	5.51	18.1	FJ
D	M30	Т	FJ	17	405	9.67	4.77	11.2	FJ
D	M30	Т	FJ	18	377	8.90	5.59	14.3	FJ
D	M30	Т	FJ	19	402	9.03	5.46	10.7	FJ
D	M30	Т	FJ	20	398	9.17	4.50	15.4	FJ
D	M30	Т	FJ	21	336	9.12	5.36	10.4	FJ
D	M30	Т	FJ	22	348	8.86	5.57	6.50	FJ
D	M30	Т	FJ	23	356	9.07	5.62	16.9	FJ
D	M30	Т	FJ	24	368	9.68	5.27	10.8	FJ
D	M30	Т	FJ	25	373	10.3	4.87	16.4	FJ
D	M30	Т	FJ	26	412	9.33	5.59	12.4	К
D	M30	Т	FJ	27	367	8.96	5.66	9.76	FJ
D	M30	Т	FJ	28	373	8.94	5.46	17.7	FJ
D	M30	Т	FJ	29	400	9.52	5.60	20.8	FJ
D	M30	Т	FJ	30	364	9.14	4.47	10.5	FJ
D	M30	Т	FJ	31	374	8.79	5.52	12.6	FJ
D	M30	Т	FJ	32	369	8.85	5.37	10.5	FJ

表 2.3.3.1.4-4 CUAZ 処理・インサイジングなし・内層用の縦引張試験結果

注:便宜的に記号を M30 としている。破壊形態について、FJ はフィンガージョイント、K は節によるものである。

表 2.3.3.1.4-5 CUAZ 処理・インサイジングあり・外層用の縦引張試験結果

	試験	体番	号		密度	含水率	縦振動法の ヤング係数	縦引張強度	破壊形態
					(kg/m ³)	(%)	(kN/mm²)	(N/mm ²)	
D	M60	Т	FJ	1	419	8.76	9.91	22.3	FJ
D	M60	Т	FJ	2	428	9.17	9.40	21.8	К
D	M60	Т	FJ	3	406	8.83	9.64	19.3	FJ
D	M60	Т	FJ	4	422	8.52	8.34	18.7	K
D	M60	Т	FJ	5	424	8.80	9.47	22.9	FJ+K
D	M60	Т	FJ	6	436	8.91	9.45	23.6	FJ
DI	M60	Т	FJ	7	512	8.69	15.2	45.1	FJ
D	M60	Т	FJ	8	426	8.81	9.75	16.3	FJ+K
D	M60	Т	FJ	9	473	9.00	12.6	27.5	FJ
D	M60	Т	FJ	10	483	8.92	11.7	30.0	FJ
D	M60	Т	FJ	11	423	9.52	10.0	25.8	FJ
DI	M60	Т	FJ	12	414	9.14	7.52	8.08	N
D	M60	Т	FJ	13	442	9.27	11.8	27.5	FJ+K
D	M60	Т	FJ	14	427	8.97	11.2	20.4	FJ+K
D	M60	Т	FJ	15	456	9.00	12.2	28.9	FJ
D	M60	Т	FJ	16	439	9.27	11.8	23.6	FJ
D	M60	Т	FJ	17	462	9.36	7.71	13.1	FJ
D	M60	Т	FJ	18	480	9.44	9.92	20.3	FJ
DI	M60	Т	FJ	19	484	8.85	9.65	17.5	FJ+K
DI	M60	Т	FJ	20	438	9.03	11.5	23.1	FJ
D	M60	Т	FJ	21	464	9.00	10.1	6.06	FJ(一部FJ抜け)
D	M60	Т	FJ	22	395	9.18	9.42	22.8	FJ
D	M60	Т	FJ	23	411	9.22	7.90	17.6	K
DI	M60	Т	FJ	24	386	8.93	10.8	23.0	FJ
D	M60	Т	FJ	25	485	9.15	12.7	27.6	К
D	M60	Т	FJ	26	517	9.61	11.7	29.2	FJ
D	M60	Т	FJ	27	498	9.32	10.6	18.1	Ν
DI	M60	Т	FJ	28	461	9.16	9.72	19.0	FJ
D	M60	Т	FJ	29	442	9.15	9.91	21.2	FJ
D	M60	Т	FJ	30	443	9.27	10.8	23.7	チャック内K
D	M60	Т	FJ	31	445	9.85	9.71	22.3	チャック内N
D	M60	Т	FJ	32	451	9.43	9.57	23.0	FJ
D	M60	Т	FJ	33	444	9.48	9.50	20.2	FJ
D	M60	Т	FJ	34	436	9.28	10.6	21.5	FJ
D	M60	Т	FJ	35	405	9.56	9.26	18.9	FJ
D	M60	Т	FJ	36	392	9.30	7.74	16.9	К
D	M60	Т	FJ	37	464	9.08	11.8	28.3	K
D	M60	Т	FJ	38	376	9.26	9.41	18.6	チャック内K
D	M60	Т	FJ	39	466	9.46	9.29	17.5	FJ+K
DI	M60	Т	FJ	40	471	9.51	10.3	15.8	FJ+K
DI	M60	Т	FJ	41	480	8.86	7.95	13.8	К
D	M60	Т	FJ	42	418	9.02	9.12	21.0	К

注:便宜的に記号をM60としている。破壊形態について、FJはフィンガージョイント、Kは 節によるもの、Nは目立った欠点のない木材部分である。

	試験	体番	昏号		密度	含水率	縦振動法の ヤング係数	縦引張強度	破壊形態
					$(k\sigma/m^3)$	(%)	(kN/mm^2)	(N/mm^2)	
DI	M30	т	FJ	1	404	9.51	5.07	13.3	FJ
DI	M30	т	FJ	2	423	9.30	6.68	16.7	K
DI	M30	т	FJ	3	388	8.86	6.53	18.3	FJ
D	M30	Т	FJ	4	444	9.63	6.84	19.5	FJ
D	M30	Т	FJ	5	413	8.86	6.49	15.0	N
D	M30	Т	FJ	6	332	9.14	7.18	18.1	FJ
D	M30	т	FJ	7	356	9.33	6.93	13.6	FJ
D	M30	Т	FJ	8	376	8.92	5.44	17.2	FJ
D	M30	Т	FJ	9	429	9.37	6.23	14.0	FJ
DI	M30	Т	FJ	10	434	8.72	6.50	11.2	К
D	M30	Т	FJ	11	392	9.23	7.32	16.2	チャック内K
D	M30	Т	FJ	12	440	9.04	7.37	8.47	FJ
DI	M30	Т	FJ	13	394	9.41	6.28	14.0	Ν
DI	M30	Т	FJ	14	430	8.92	6.84	13.6	К
DI	M30	Т	FJ	15	435	9.75	8.16	17.7	FJ(K有)
DI	M30	Т	FJ	16	445	9.17	7.46	15.7	FJ
DI	M30	Т	FJ	17	435	10.1	6.45	9.17	FJ
DI	M30	Т	FJ	18	436	8.93	6.60	9.93	FJ
D	M30	Т	FJ	19	399	10.1	6.71	10.2	チャック内K
D	M30	Т	FJ	20	422	9.15	6.66	10.6	К
D	M30	Т	FJ	21	478	8.95	6.01	9.57	К
DI	M30	Т	FJ	22	457	9.43	7.00	16.1	К
DI	M30	Т	FJ	23	357	9.18	6.50	11.3	FJ
D	M30	Т	FJ	24	423	9.47	8.01	15.7	FJ
D	M30	Т	FJ	25	357	9.48	6.02	14.6	FJ
D	M30	Т	FJ	26	378	8.65	6.78	14.5	チャック内K
D	M30	Т	FJ	27	404	9.54	7.49	12.5	FJ(FJ内にK)
D	M30	Т	FJ	28	350	9.21	8.72	14.9	チャック内K
D	M30	Т	FJ	29	418	9.65	7.11	17.1	К
D	M30	Т	FJ	30	367	9.70	6.43	13.3	FJ
D	M30	Т	FJ	31	440	9.02	7.23	11.6	К
D	M30	Т	FJ	32	395	9.05	6.62	19.2	FJ+N
D	M30	Т	FJ	33	353	8.82	7.57	16.3	FJ
D	M30	Т	FJ	34	434	9.49	7.40	14.6	FJ
D	M30	Т	FJ	35	423	8.97	7.49	17.8	FJ
D	M30	Т	FJ	36	424	9.21	6.94	15.5	チャック内K
DI	M30	Т	FJ	37	391	8.50	7.66	18.3	Ν
DI	M30	Т	FJ	38	437	9.69	6.28	18.2	FJ
D	M30	Т	FJ	39	389	9.45	5.57	12.5	Ν
D	M30	Т	FJ	40	423	9.25	6.28	13.1	Ν
D	M30	Т	FJ	41	433	9.22	6.73	13.6	Ν
D	M30	Т	FJ	42	363	8.79	6.91	13.1	Ν
D	M30	Т	FJ	43	391	9.31	7.68	15.4	チャック内N
D	M30	Т	FJ	44	435	8.23	6.53	13.8	チャック内N

表 2.3.3.1.4-6 CUAZ 処理・インサイジングあり・内層用の縦引張試験結果

注:便宜的に記号を M30 としている。破壊形態について、FJ はフィンガージョイント、K は 節によるもの、N は目立った欠点のない木材部分である。